

Метод подобия в задаче многократного рецикла плутония в двухкомпонентной ядерной энергетической системе

АО «ГНЦ РФ-ФЭИ им. А.И. Лейпунского»

Усанов В.И., Хныкина Е.С., Исанов К.А.

Представляет Хныкина Е.С.

Актуальность и практическая значимость работы

Проблема топливообеспечения

Обеспокоенность общественности вопросами ядерной безопасности и утилизации ОЯТ и РАО, а также низкая цена на уран привели к откладыванию на второй план проблемы топливообеспечения и низкому темпу роста ядерных мощностей.

Спрос на ядерное топливо

Цена природного урана на мировых рынках, как один из индикаторов ожиданий в отношении перспектив ввода новых ядерных мощностей с 2023 года существенно возросла.

Позитивная повестка ЯЭ сегодня

Обсуждение перспективы устойчивого развития мирового энергетического сектора, развития безуглеродной энергетики, безопасная эксплуатация ЯЭУ способствовали росту позитивного общественного мнения в отношении ЯЭ и планов ее развития.

Фундаментальное свойство 2-х компонентной ЯЭС

Расширение топливной базы ЯЭ за счет наработки и многократного использования Ри.

Возможный подход к многократному рециклу топлива

Использование Pu в тепловых реакторах в ЗЯТЦ с использованием Pu из зоны воспроизводства быстрого реактора.

Направления рецикла ядерного топлива

Использование Pu из ОЯТ ВВЭР для топлива БН с целью снижения потребления U в ЯЭС, использования энергетического потенциала Pu и снижения его накопления, является общепризнанным перспективным направлением.

Однако низкие цены на U привели к тому, что бывшие лидеры в создании реакторов на быстрых нейтронах отложили или отказались от программ по их разработке. В результате единственным вариантом повторного использования Pu стало использование МОКС-топлива в тепловых реакторах.

Нынешний рост цен на U и масштабное строительство реакторов на тепловых нейтронах в России и за рубежом свидетельствуют о целесообразности дальнейшего развития подходов по обращению с топливом и в нашей стране.

Взаимодействие двух компонент
Российской ЯЭ на основе тепловых и
быстрых реакторов позволяет
рециклировать плутоний более
эффективно, чем в странах, где
использованию МОКС-топлива в реакторах
на тепловых нейтронах пока нет
альтернативы.

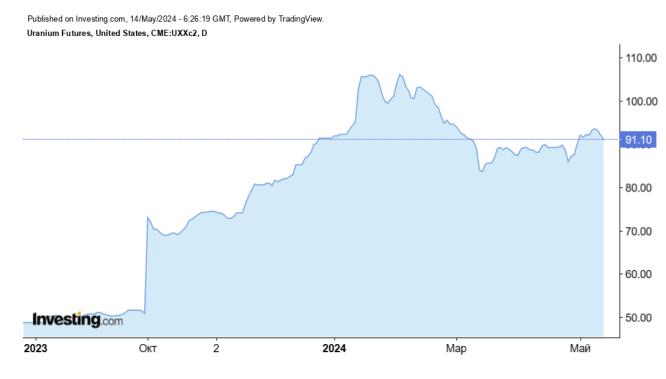


Рис. Фьючерс на уран

Особенности использования Ри в реакторах на тепловых нейтронах

Частичная загрузка МОКС-топлива

Ограничения:

- Проектные ограничения, имеющие отношение к безопасности [1]:
- 1) Снижение эффективности органов СУЗ, борной кислоты и выгорающих поглотителей;
- 2) уменьшение эффективной доли запаздывающих нейтронов;
- 3) увеличение количества нейтронов деления;
- 4) повышение неравномерности энерговыделения и других эффектов;
- 5) условие о содержании плутония в МОКС топливе менее 12% (ограничивает возможности многократного рецикла).
- Однократный цикл Ри.

Полная загрузка РЕМИКС-топлива

Основные ограничения [3]:

- 1) Снижение эффективности органов компенсации реактивности;
- 2) содержание плутония в РЕМИКС-топливе менее 5%.

В России продолжаются работы над проектами реакторов с полной загрузкой РЕМИКСтопливом.

Возможности:

- Частичная загрузка является отработанной технологией [2].
- Утилизации Ри из ОЯТ нескольких РТН с возможностью экономии природного урана.
- Превращение Ри из ВАО в составе ОЯТ в ценный источник энергии.

Многократный рецикл Ри в РТН в рамках двухкомпонентной системы может быть осуществлен путем создания условий, близких к условиям реализации первого цикла МОКС топлива

^{1.} Le Mer J., Carzenne C., Lemasson D. France EDF Research Scenarios for Closing the Plutonium Cycle. International Conference of Fast Reactors and Related Fuel Cycles. Safe Technologies and Sustainable Scenarios FR13, 4-7 March 2013, Paris, France. Paper N IAEA-CN-199-292.

^{2.} Physics and Fuel Performance of Reactor-Based Plutonium Disposition. AEA/NEA, Workshop Proceedings, Paris, France, 28-30 September, 1998

^{3.} Павловичев А.М. И др. Нейтронно-физические характеристики активной зоны ВВЭР-1000 со 100%-ной загрузкой топливом из смеси регенерированного урана, плутония и обогащенного урана // атомная энергия. – 2006. – Т.101. – с. 407-413.

Подход к формированию состава топлива для многократного рецикла в ЯЭС ВВЭР/БН

Варианты повторного использования Ри [1,2] **предполагают** реализацию схем со сложной логистикой, что с практической точки зрения представляет большие трудности для предприятий ЯТЦ и других составляющих инфраструктуры:

- Необходимость поддержания точных составов топлива при переработке ОЯТ
- Необходимость строгой последовательности изготовления топлива

Предлагаемый подход:

Корректировка изотопного состава Pu отработавшего МОКС-топлива путем смешивания Pu из зон воспроизводства БН и ОЯТ БН.

Каждая новая загрузка МОКС топлива реактора ВВЭР с откорректированным составом плутония должна обеспечивать необходимый запас реактивности и требуемые физические характеристики активной зоны до конца кампании

Метод корректировки состава плутония в МОКС топливе

<u>ИДЕЯ МЕТОДА ПОДОБИЯ</u>

Сохранение в формируемом топливе состава Ри, близкого к составу первоначальной загрузки МОКС-топлива.

Реализация этого метода с учетом изотопов урана, плутония и МА практически невыполнима из-за отсутствия способа разделения нуклидов при фабрикации МОКС-топлива

В работе рассмотрен упрощенный вариант корректировки топлива с сохранением в повторных загрузках МОКС-топлива количества делящегося Pu.

Ежегодная загрузка МОКС-топлива для ВВЭР:

 \mathbf{m} (делящегося Pu) в МОКС(n+1) = \mathbf{m} (делящегося Pu) в МОКС(n) \mathbf{m} (всего Pu) в MOKC(n+1) = \mathbf{m} (всего Pu) в MOKC(n)

В работе были рассмотрены следующие источники:

- Ри высокого качества из зон воспроизводства БН
- Pu равновесного качества из а.з. БН

Тогда задача определения структуры системы, обеспечивающей многократный рецикл, сводится к решению уравнений

 $N_{(BB3P\ c\ MOKC-топливом)}$ * $m_{(выгружаемого\ делящегося\ Pu)\ MOKC(n)}$ + $N_{(БH)}$ * $m_{(выгружаемого\ делящегося\ Pu)}$ из $EH=m_{(делящегося\ Pu)}$ в $EH=m_{(deлящегося\ Pu)}$ в $EH=m_{($ \mathbf{N} (ВВЭР с МОКС-топливом) \mathbf{m} (всего выгружаемого Pu) МОКС(n) \mathbf{m} (БСЕГО ВЫГРУЖАЕМОГО Pu) из БН \mathbf{m} (всего Pu) в МОКС(n+1)

Расчетная модель

Основные параметры	BBЭP-1200	BB3P-1200 (MOKC)	БН-1200		
	(UOX)	BBO1 -1200 (MORO)	Активная зона	Зона воспроизводства	
Электрическая мощность/Тепловая мощность, МВт	1200/3000	1200/3000	1200/2800	1200/2800	
Реакторная кампания, эфф. сут.	300	300	330	330	
КИУМ	0,9	0,9	0,9	0,9	
Количество ТВС в зоне, шт.	163	163	432	74	
Количество ТВС с МОКС-топливом, шт.	0	54	432	0	
Кратность перегрузок	4	4	4	8	
Количество ТВС, перегружаемых ежегодно, шт.	40	14(MOKC)/26(UOX)	108	21	
Топливная кампания, эфф. сут.	1200	1200	1320	2640	
Глубина выгорания топлива (средняя) МВт*сут/кг	51,2	51,2	88	БЭ-14	
Время выдержки + переработки , лет	5	5	5	2	
Масса топлива/ масса тяжелых атомов, т	86/75	86/75	47,2/42	22,2/19,7	

Расчеты выполнены с помощью программы WIMS, предназначенной для расчётов ячеек различных типов реакторов, расчёта выгорания и получения мелкогрупповых констант.

^{1.} Выговский С. Б. и др. Физические и конструкционные особенности ядерных энергетических установок с ВВЭР //М.: НИЯУ МИФИ. – 2011. – Т. 376.

^{2.} Рачков В. И. и др. Концепция перспективного энергоблока с быстрым натриевым реактором БН-1200 //Атомная энергия. – 2010. – Т. 108. – №. 4. – С. 201-205.

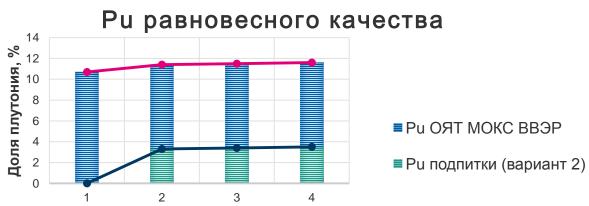
Формирование состава плутония

Pu первого цикла МОКС-топлива теплового реактора							
	Pu -238	Pu -239	Pu -240	Pu -241	Pu -242		
Плутоний на входе в а.з.	3%	55%	24%	12%	6%		
Плутоний на выходе из а.з.	3%	46%	27%	17%	7%		
Плутоний после выдержки (4 года)	4%	48%	28%	13%	7%		

Ри подпитки							
	Pu -238	Pu -239	Pu -240	Pu -241	Pu -242		
Плутония высокого качества (Вариант 1)	1%	95%	1%	2%	1%		
Плутоний равновесного состава БН (Вариант 2)	0%	68%	26%	3%	3%		

Результаты корректировки Pu MOKC-топлива теплового реактора отработавшего один цикл						
	Pu -238 Pu -239 Pu -240					
ОЯТ МОКС + Ри высокого качества (Вариант 1)	3%	58%	23%	11%	6%	
ОЯТ МОКС + Ри равновесного качества БН (Вариант 2)	2%	60%	23%	10%	5%	

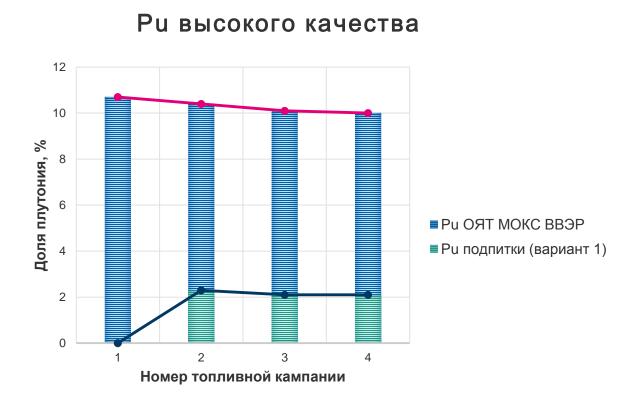
^{1.} Павловичев А. М. и др. Нейтронно-физические характеристики активной зоныВВЭР-1000 со 100%-ной загрузкой топливом из смеси регенерированного урана, плутония и обогащенного урана //Атомная энергия. – 2008. – Т. 104. – №. 4. – С. 195-198.


^{2.} Клинов Д. А. и др. Вызовы и стимулы развития натриевых быстрых реакторов в современных условиях //Атомная энергия. – 2018. – Т. 125. – №. 3. – С. 131-136.

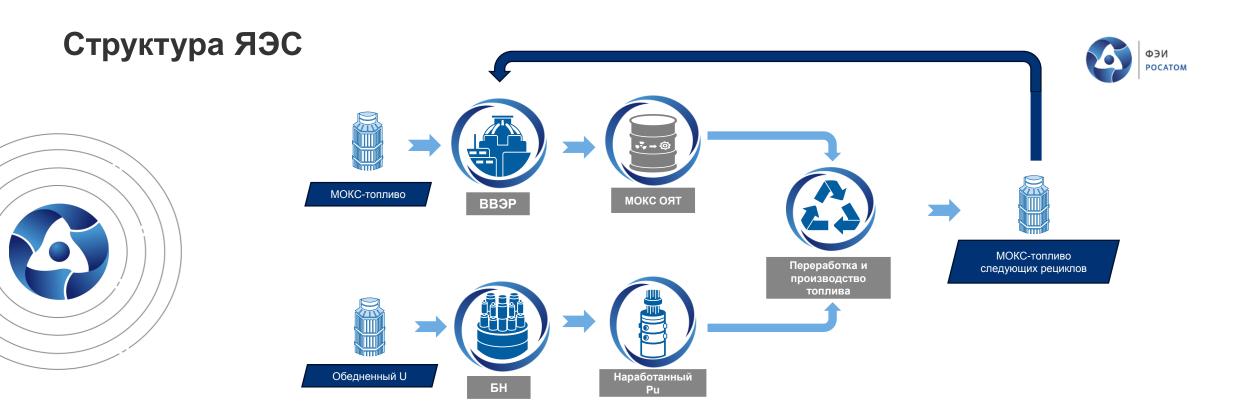
Результаты расчетов

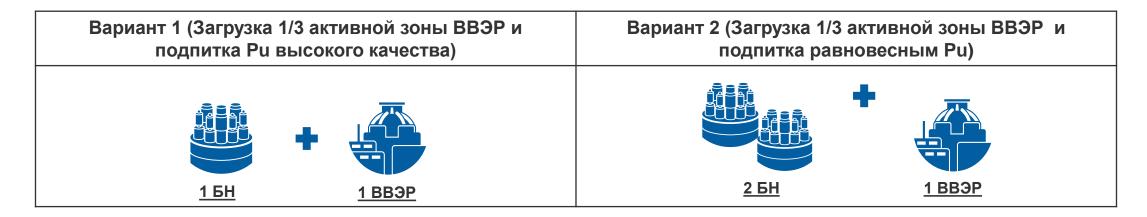
Номер топливной кампании

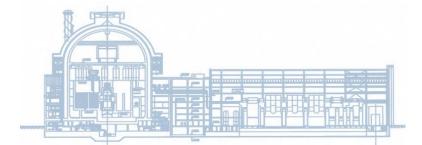
Качество Ри


ОЯТ МОКС + Pu высокого качества (Вариант 1)							
Топливо	Pu-238	Pu-239	Pu-240	Pu-241	Pu-241	Подпитка Ри кг	
Эталонный MOKC (MOKC-1)	3%	55%	24%	12%	6%	0	
ОЯТ МОКС-1 после выдержки	3%	46%	29%	14%	8%	0	
МОКС после 1 корректировки	3%	58%	23%	11%	6%	139	
МОКС после 2 корректировки	2%	59%	23%	10%	5%	133	
МОКС после 3 корректировки	2%	60%	23%	10%	5%	133	
ОЯТ MOKC + Pu pa	авновес	ного кач	ества БН	I (Вариа	нт 2)		
Топливо	Pu-238	Pu-239	Pu-240	Pu-241	Pu-241	Подпитка Ри кг	
Эталонный МОКС (МОКС-1)	3%	55%	24%	12%	6%	0	
ОЯТ МОКС-1 после выдержки	3%	46%	29%	14%	8%	0	
МОКС после 1 корректировки	1%	61%	27%	6%	4%	370	
МОКС после 2 корректировки	1%	61%	28%	7%	4%	353	
МОКС после 3 корректировки	1%	60%	28%	7%	4%	342	


^{1.} Ковалёв Н.В., Прокошин А.М., Кудинов А.С., Невиница В.А. Использование плутония из отработавшего смешанного топлива РЕМИКС в реакторе БН-1200 //Известия вузов. Ядерная энергетика. – 2023. – № 1. – С. 70-81. — о DOI: https://doi.org/10.26583/npe.2023.1.06


Павловичев А. М. и др. Нейтронно-физические характеристики активной зоны ВВЭР-1000 со 100%-ной загрузкой топливом из регенерированного урана и плутония //Атомная энергия. – 2006. – Т. 101. – №. 6. – С. 407-413


Сравнение с результами предыдущих работ



Заключение

- **01** Представлен методический подход, дающий ориентир для выбора состава плутония подпитки ОЯТ ВВЭР для обеспечения многократного рецикла плутония в двухкомпонентной ядерно-энергетической системе ВВЭР-БН с частично замкнутым ЯТЦ.
- **02** Вариант с третью загрузки активной зоны теплового реактора МОКС-топливом не требует разработки дополнительных систем обеспечения безопасности и является отработанной технологией.
- Предварительные результаты показывают, что Pu из реакторов БН, в первую очередь из зон воспроизводства, способен поддерживать необходимый энергетический потенциал топлива легководных реакторов для многократного рецикла плутония, и, тем самым, снижать потребление природного урана и накопление плутония в ЯЭС.
- O4 Содержание плутония в МОКС-топливе и корректировка изотопного состава плутония, а также массы плутония подобраны таким образом, чтобы полученная смесь имела ценность и энергетический потенциал как у МОКС-топлива первой загрузки теплового реактора.
- **05** Анализ структуры ЯЭС, показывает, что в рамках предложенного подхода один реактор БН способен обеспечить частичную загрузку реактора ВВЭР без использования дополнительных источников плутония.

Таким образом, в условиях невысоких темпов развития ядерной энергетики и значительного превалирования числа тепловых реакторов над быстрыми, производство качественного плутония в БН с высоким содержанием делящихся изотопов и его использование в РТН может стать важным шагом для развития двухкомпонентной системы ЯЭ.

Спасибо за внимание

Хныкина Екатерина

Phone: +7 (48439)9 82-13 E-mail: eskhnykina@ippe.ru