Моделирование стохастических шаровых засыпок реакторов типа ВТГР

Докладчик: Кушнир Н.О.

Инженер-исследователь ОБВР ККПАЭ

НИЦ «Курчатовский институт»

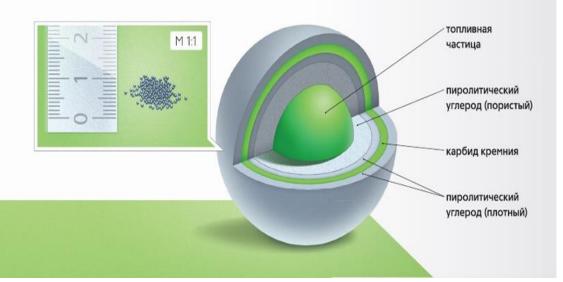
Обнинск, 2024

1

Введение

Необходимость исследования




- <u>Глобальная цель</u>: верификация нейтронно-физических кодов
- <u>Способ достижения цели</u>: анализ экспериментов, проведённых на ВТГР-стенде
- <u>Задача</u>: исключить возможные неточности моделирования, которые не относятся к мат. аппарату кодов
- <u>■Проблема</u>: моделируемый ВТГР-стенд АСТРА имеет стохастическую шаровую засыпку, геометрия которой будет обрезана в случае её задания регулярной решеткой
- <u>Решение</u>: создано **универсальное** ПО для точного моделирования стохастических засыпок

Шаровые засыпки

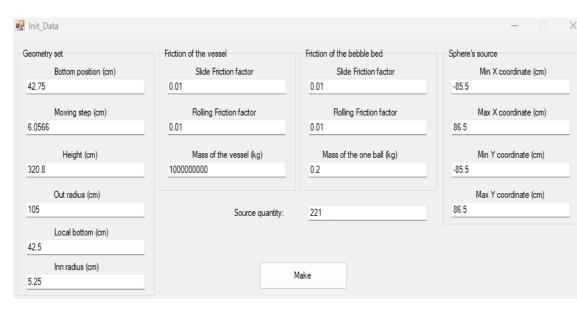
Рассмотренные варианты

Для получения стохастической шаровой засыпки возможны способы:

- ■Розыгрыш точек в нужном объёме и дальнейшее их увеличение до шаров нужного диаметра;
- ■Розыгрыш типа решётки на каждом шаге, получая случайную решётку из регулярных решёток;
- ■Ручное задание случайного размещения шаров в слое и дальнейшее его размножение до нужной высоты;
- ■Детальное моделирование шаров с учётом физики: сила тяжести, законы сохранения импульса и энергии, плотность.

2

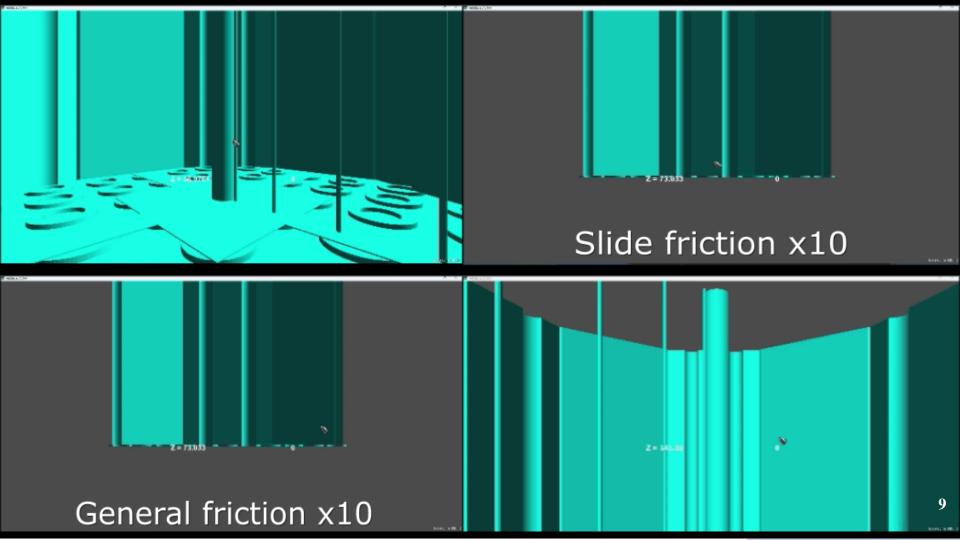
О программе



Программа

Входные данные:

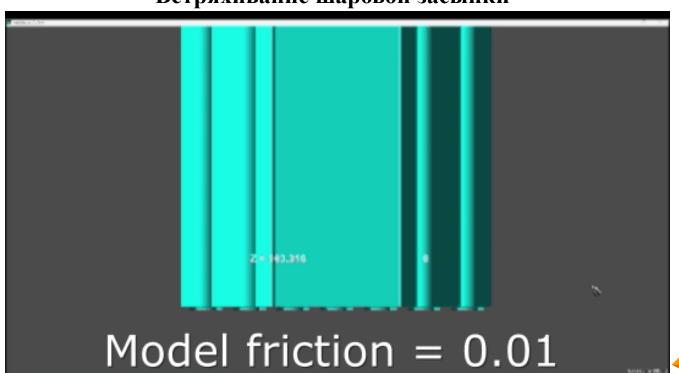
- ■САО-модель формата «.obj»;
- -Диапазон засыпки по вертикали;
- Диапазон засыпки по горизонтали;
- Диаметр шаров;
- Масса шаров;
- Трение скольжения и качения ШЭ;
- Трение поверхности модели;
- Масса модели;
- •Область появления шаров;
- •Количество шаров при появлении.


Возможности моделирования

В программе учитывается:

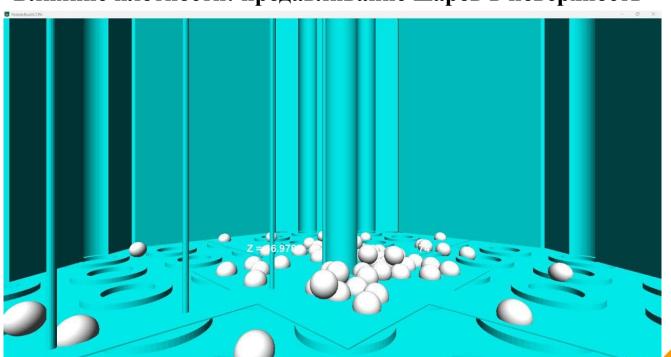
- **Т**рение шаров;
- **Т**рение модели;
- ■Плотность модели;
- ■Возможность встряхивания засыпки;
- ■Возможность фиксации степеней свободы шаров (заморозка);
- •Сохранение координат всех шаров;
- -Загрузка шаровых засыпок по координатам из файла;
- ■Шары можно как сыпать, так и класть;
- ■Может работать автономно в фоновом режиме;
- •Изменение входных данных в ходе работы программы.

^{*}Демонстрация трения производится на следующем слайде



Возможности моделирования

Встряхивание шаровой засыпки



Возможности моделирования

Влияние плотности: продавливание шаров в поверхность

3

Практическое применение

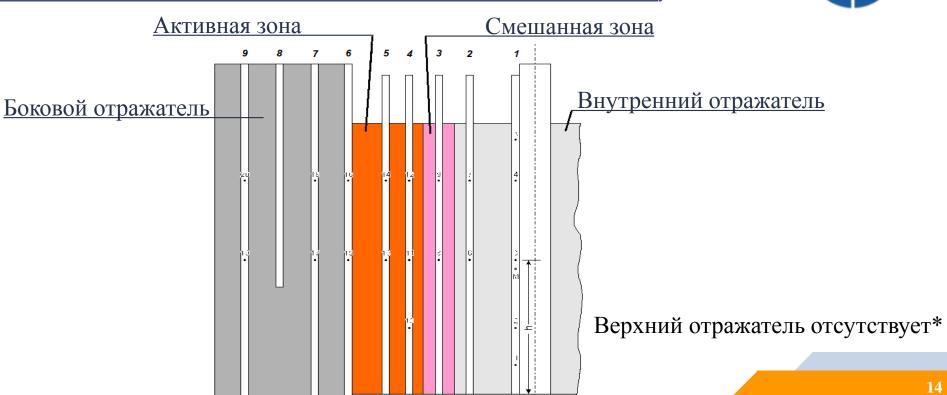
ВТГР-стенд АСТРА

■8-ми угольная активная зона

-Три секции

Центральный экспериментальный канал Внутренний отражатель

Смешанная зона


Кольцевая активная зона

Боковой графитовый отражатель

ВТГР-стенд АСТРА

HTO

ВТГР-стенд АСТРА

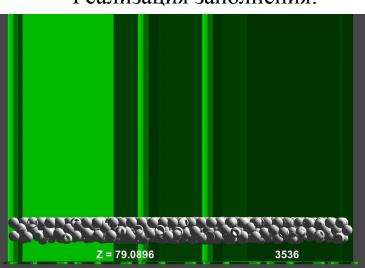
Номер сборки	Активная зона		Смешанная зона			Внутренний отражатель
	Топливные элементы	Поглощающие элементы	Топливные элементы	Графитовые элементы	Поглощаю щие элементы	Графитовые элементы
1	24194	1274	3283	3462	174	6197
2	25777	1357	3498	3696	185	6615
3	28994	1526	3935	4141	208	7412
4	28994	1526	3935	4141	208	7412

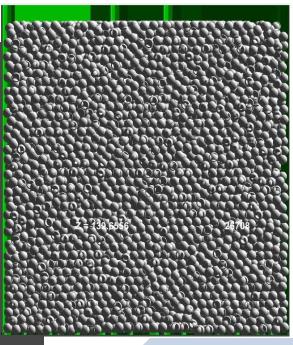
Процесс моделирования

Шаровая засыпка в эксперименте на ВТГР-стенде АСТРА:

- Число заполненных слоев − 52;
- Число шаров в незаполненном 53 слое − 248;
- Среднее число шаров на один полный слой − 884;
- ■Полное число шаров в 52-х/53-х слоях 45968/46216;
- ■Высота засыпки 320 см.

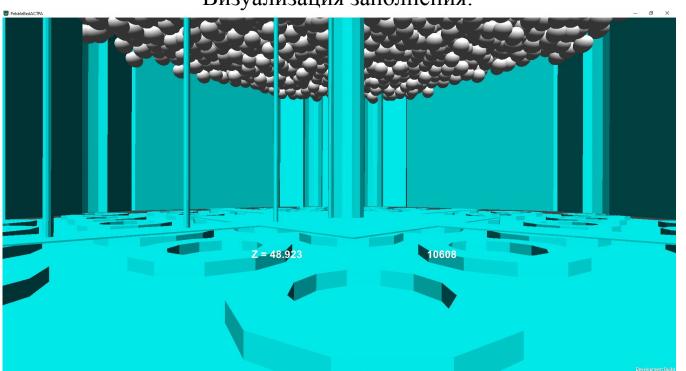
Для создания засыпки моделируем ступенчато:


- ■Создаём 2 слоя шаров (884·2) с нужным шагом исходя из высоты засыпки;
- ■После заполнения ждём 3 мин, чтобы дать системе прийти к состоянию с минимальной внутренней энергией;
- •Фиксируем шары и далее повторяем процедуру до полного заполнения.



Процесс моделирования

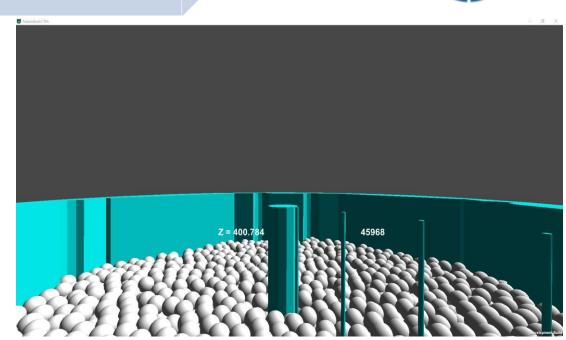
Реализация заполнения:



Процесс моделирования

Визуализация заполнения:

Результаты

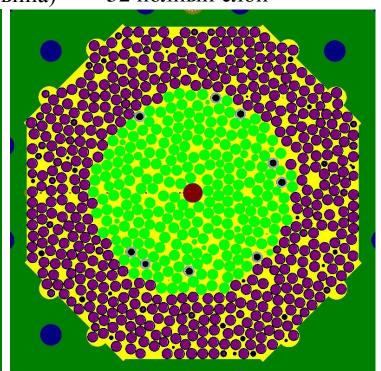

Итог моделирование засыпки

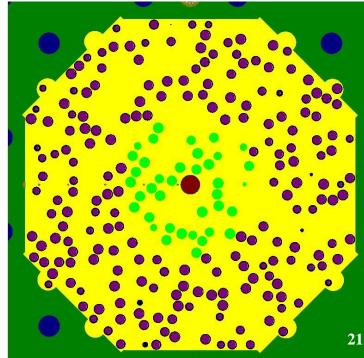
■52 заполненных слоя – ровно 45968 шаров

•Шаровые элементы окружают экспериментальные каналы, но не пересекают их

•Сохранив координаты засыпки передаём данные в нейтроннофизический код


Работа MCU-HTR




Вид в разрезе (половина)

52 полный слой

53 неполный слой

Результат расчёта

- -Смоделировано 4 шаровых засыпки разными алгоритмами;
- ■С помощью полученных засыпок проверялся критический эксперимент;
- ■Результаты эксперимента показали наличие чувствительности ЭКР от алгоритма:

№ засыпки	К-эфф при данной засыпке	Отклонение от критичности, %
1	1,015	1,5
2	0,999	0,1
3	0,995	0,5
4	1,008	0,7

 Далее планируется использование засыпок для проверки экспериментов и улучшение расчётной модели.

Спасибо за внимание!