

Исследование влияния изотопного состава топлива на нейтроннофизические характеристики РУ БР-1200

«Нейтронно-физические проблемы атомной энергетики», г. Обнинск

Докладчик: Хахулин Влад Игоревич

Инженер

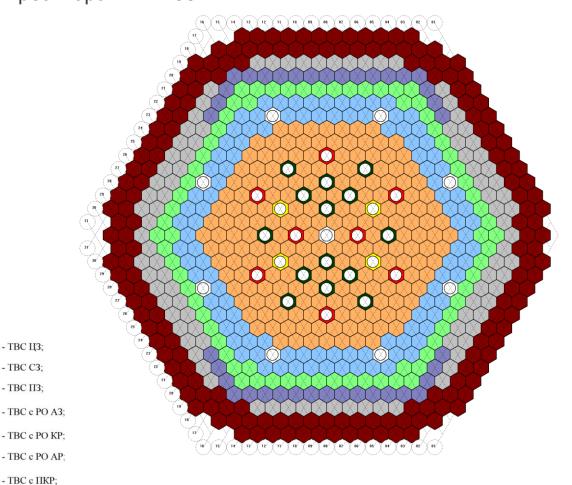
Авторы: А.П. Жирнов, В.К. Давыдов, А.В. Моисеев, Е.О. Солдатов, В.И. Хахулин

28.05.2024-31.05.2024

Цель работы

 исследование нейтронно-физических характеристик активной зоны реактора БР-1200 при изменении изотопного состава плутония в топливе стартовой загрузки.

В рамках поставленной цели в качестве топлива рассмотрены следующие варианты изотопного состава топлива:


14	Массовая доля, %									
Изотопный состав	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu	²⁴¹ Am				
"БР-1200" (БРЕСТ-ОД-300)	1,2	68,3	23,2	2,8	4,2	0,3				
"БН-1200"	1,5	61,4	24,7	6,8	4,9	0,7				
"ОЯТ МОХ ВВЭР"	2,8	37,1	35,2	11,9	11,8	1,2				
"БН-800"	0,1	91,7	6,6	1,1	0,4	0,1				
"ОЯТ ВВЭР"	0,0	60,0	25,0	10,0	4,0	1,0				

Расчет изотопного состава проведён с учетом частичного распада ²⁴¹Pu и образования ²⁴¹Am в течение двух лет от изготовления топлива до пуска реактора.

Стартовая загрузка активной зоны БР-1200

Рассмотрен вариант, относящийся к стадии эскизного проектирования, стартовой загрузки реактора БР-1200

TBC II3: - TBC C3; - ТВС ПЗ;

блок отражателя с УПОС;

блок отражателя;

В качестве базового варианта топлива реактора БР-1200 принят изотопный состав топлива реактора БРЕСТ-ОД-300:

 238 Pu - 1,2 %; 239 Pu - 68,3 %; 240 Pu - 23,2 %;

²⁴¹Pu – 3,1 %; ²⁴²Pu – 4,2 %.

Основные технические характеристики элементов а.з.

Параметр	Значение
Масса топлива, т	~50
Число кассет Ц3/С3/П3	186/104/72
Число кассет с РО СУЗ/ПКР	26/9
Высота топливного сердечника, мм	1500
KB	1,11
Эффективная доля запаздывающих нейтронов, % бК/К	0,35

Эффект от полной замены изотопного состава Ри в топливе активной зоны (в той же геометрии, методическая оценка)

Парамотр	"БР-1	1200"	"БН-′	"БН-1200"		"XOM TRO"		ВВЭР"	"БН-800"	
Параметр	FACT-BR	MCU-BR	FACT-BR	MCU-BR	FACT-BR	MCU-BR	FACT-BR	MCU-BR	FACT-BR	MCU-BR
Плотность топлива, г/см ³ (20 ° C)	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Содержание плутония в смеси изотопов урана и плутония, % вес.	l 13.6	13,6	13,6	13,6	13,6	13,6	13,6	13,6	13,6	13,6
Отклонение реактивности, % бК/К	-	-	-0,66	-0,71	-13,8	-14,4	0,93	0,93	11,3	11,6
Коэффициент воспроизводства	1,11	1,11	1,15	1,15	1,61	1,59	1,10	1,10	0,81	0,81
Эффективная доля запаздывающих нейтронов, % δK/K	0,35	0,34	0,37	0,36	0,41	0,40	0,38	0,37	0,33	0,32

Параметры топлива активной зоны БР-1200 после корректировки плотности топлива и массовой доли плутония

Параметр	"БР-1200"	"БН-1200"	"ORT MOX"	"ОЯТ ВВЭР"	"БН-800"
Плотность топлива, г/см ³ (20 ° C)	12,1	12,2	12	12,75	13,75*
Содержание плутония в смеси изотопов урана и плутония, % вес.	13,6	13,7	16,9	13,1	10,5
Запас реактивности, β _{эф}	0,54	0,51	0,36	0,72	0,62
Эффективная доля запаздывающих нейтронов, %бК/К	0,35	0,37	0,39	0,38	0,36
Нептуниевый эффект, % δК/К	-0,11	-0,12	-0,10	-0,13	-0,16
a.		_			

^{* -} методическая оценка увеличения плотности топливного столба для варианта с изотопным составом БН-800

Корректировка плотности топлива и массовой доли плутония осуществлялась для достижения требуемого запаса реактивности и хода реактивности по кампании.

Сравнение максимальной мощности ТВС

Максимальная температура оболочки твэла является одним из ключевых параметров, определяющих безопасную эксплуатацию реактора БР-1200, поэтому важно исследовать максимальное энерговыделение в каждом типе кассет.

Параметр	"БР-1200"	"БН-1200"	"XOM TRO"	"ОЯТ ВВЭР"	"БН-800"
Максимальная мощность ТВС Ц3, МВт	9,17	9,16	9,1	9,17	9,16
Максимальная мощность ТВС С3, МВт	8,19	8,2	8,23	8,21	8,23
Максимальная мощность ТВС ПЗ, МВт	6,86	6,9	6,94	6,88	6,85
Максимальная мощность ТВС с РО, МВт	4,04	4,04	4,0	4,04	4,03

Изменение распределения мощности ТВС незначительно и не превышает 0,1 МВт. Использование различного изотопного состава плутония практически не изменяет распределение полей энерговыделения.

Эффективность РО СУЗ и эффекты реактивности активной зоны БР-1200

Параметр	"БР-1200"	"БН-1200"	"ОЯТ МОХ"	"ОЯТ ВВЭР"	"БН-800"
Эффективность РО АЗ, % δK/K	3,18	3,17	3,11	3,15	2,94
Эффективность РО ЭСМ, % δK/K	4,03	4,02	3,93	3,98	3,69
Эффективность РО СУЗ, % δК/К	5,64	5,61	5,50	5,56	5,16
Эффективность СПОС, % δK/K	0,40	0,41	0,42	0,41	0,37
Содержание плутония в смеси изотопов урана и плутония, % вес.	13,6	13,7	16,9	13,1	10,5
Полный температурно-мощностной эффект (от «холодного состояния» до 100 % N _{ном}), % δK/K	-0,66	-0,67	-0,63	-0,69	-0,72

- Отклонения в эффективности групп РО СУЗ объясняются отличием плотности потока нейтронов в ТВС.
- Поскольку нейтронно-физический расчет проводится для фиксированного уровня мощности (2930 МВт), то нормировочный множитель для функции плотности потока нейтронов определяется размножающими свойствами реактора. Усредненные макроскопические сечения деления и поглощения определяются изотопным составом топлива, поэтому отличаются для рассматриваемых вариантов топливного состава.
- В каждом из рассмотренных вариантов изотопных составов топлива группы РО СУЗ обеспечивают перевод и удержание реактора в подкритическом состоянии в соответствии с нормативными требованиями.

Моделирование кампании БР-1200 с использованием разных изотопных составов Pu

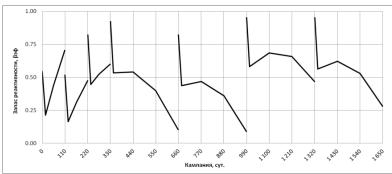
Исследовано изменение запаса реактивности по кампании реактора в режиме работы на номинальной мощности в течении начального этапа эксплуатации. Под начальным этапом эксплуатации понимается время от начала эксплуатации до первой перегрузки с загрузкой собственным регенерированным топливом.

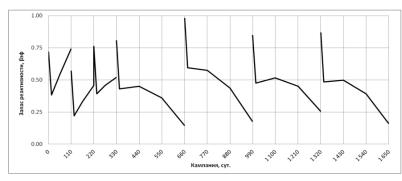
Рассмотрены пять микрокампаний по 330 эф. сут. с остановками на 35 суток. Первые 15 суток после пуска выделены для фиксации нептуниевого эффекта. В период остановки реактора учитывается изменение изотопного состава топлива.

Расчеты кампаний проведены с помощью ПК FACT-BR с 26-групповым диффузионным приближением и системой подготовки нейтронных сечений – CONSYST с библиотекой БНАБ-93.

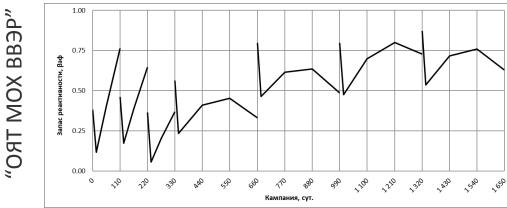
В расчетах кампании принято:

- РО СУЗ находят в нижнем рабочем положении (извлечены из а.з.);
- максимальный запас реактивности на номинальной мощности не превышает 1 β_{эф};
- штатного набора ПКР достаточно для работы реактора с запасом реактивности менее 1 β_{эф};
- максимальное выгорание не превышает 12,5 % т.а.;
- максимальная повреждающая доза в конструкционных материалах не превышает 169 СНА;
- допускается варьирование плотности топливного столба и массовой доли плутония для загружаемых партий ТВС.


Моделирование кампании БР-1200 с использованием разных изотопных составов Pu



Время, эф. сут.	0	660	990	1320
Плотность топливного столба, г/см3 (20 °C)	12,1	12,1	12	12,1
Доля Ри в загружаемом топливе, %	13,6	13,4	13,35	13,4
Количество перегружаемых ТВС	-	89	88	96


Время, эф. сут.	0	660	990	1320
Плотность топливного столба, г/см3 (20 °C)	12,2	12,6	12,3	12,2
Доля Ри в загружаемом топливе, %	13,7	13,45	13,4	13,4
Количество перегружаемых ТВС	-	89	88	96

Время, эф. сут.	0	660	990	1320
Плотность топливного столба, г/см3 (20 °C)	12,75	12,7	12,6	12,75
Доля Ри в загружаемом топливе, %	13,1	13,1	12,9	12,9
Количество перегружаемых ТВС	-	89	88	96

Моделирование кампании БР-1200

с использованием разных изотопных составов Ри

Время, эф. сут.	0	660	990	1320
Плотность топливного столба, г/см3 (20 °C)	12	12	12	12
Доля Ри в загружаемом топливе, %	16,9	16,7	16,65	16,65
Количество перегружаемых ТВС	-	89	88	96

	1.00			1									
фед	0.75		Λ										
Запас реактивности, βэф	0.50		/					\bigcap			-V		
Запас р	0.25								$\overline{}$				
	0.00	0 720	220	339	No v	ès le	у ДО		990 719	2220	1.32 ⁰	, 15k0	76%

Время, эф. сут.	0	660	990	1320
Плотность топливного столба, г/см3 (20 °C) *	13,75	13,55	13,45	13,75
Доля Ри в загружаемом топливе, %	10,5	10,3	10,3	10,4
Количество перегружаемых ТВС	-	89	88	96

^{* -} методическая оценка для варианта с изотопным составом "БН-800"

При использовании изотопного состава плутония "ОЯТ МОХ ВВЭР" и "БН-800" стратегия перегрузок ПКР и штатных ТВС совпадает с вариантом реактора БР-1200.

Для моделей с изотопным составом плутония "ОЯТ ВВЭР", "БН-1200" введены корректировки использования ПКР. Для всех рассматриваемых вариантов топлива в расчетном моделировании реализуется работа реактора с малым запасом реактивности.

Основные выводы по использованию разных изотопных составов плутония в БР-1200

Изменение запаса реактивности активной зоны БР-1200 (βэф) при хранении ТВС стартовой загрузки

Срок хранения, лет	"БР-1200"	"БН-1200"	"ОЯТ МОКС ВВЭР"	"БН-800"	"ОЯТ ВВЭР"	
0	1,53	2,74	4,64	0,82	3,68	
1	1,00	1,60	2,48	0,69	2,23	
2	0,54	0,51	0,33	0,56	0,75	целевой срок: 2 года
3	0,11	-0,52	-1,78	0,42	-0,67	
4	-0,33	-1,54	-3,87	0,29	-2,06	

✓ При использовании изотопных составов: "БН-1200", "ОЯТ МОХ ВВЭР", "ОЯТ ВВЭР" необходимо строго соблюдать сроки ввода энергоблока в эксплуатацию. Задержка приводит к существенной потере реактивности активной зоны, опережение завышает запас реактивности.

Заключение

- ✓ Проведен анализ нейтронно-физических характеристик активной зоны реактора БР-1200 при изменении изотопного состава плутония в топливе стартовой загрузки.
 - Рассмотрены варианты топливного состава с использованием плутония из стартовой загрузки БН-1200, бланкета БН-800, ОЯТ МОХ ВВЭР, ОЯТ ВВЭР без выдержки.
- ✓ Отмечается существенное влияние изотопного состава плутония на размножающие свойства стартовой загрузки реактора БР-1200.
 - В зависимости от изотопного состава плутония отклонение запаса реактивности от проектного варианта могут достигать 14 % δК/К. Необходимо выполнять корректировку плотности топливного столба и массовой доли плутония в зависимости от поставляемого изотопного состава плутония.
- ✓ Для всех вариантов определена схема перегрузок топлива активной зоны БР-1200, моделируется работа реактора на мощности с малым запасом реактивности.
 Для плутония "ОЯТ МОХ ВВЭР" и "БН-800" стратегия перегрузок ПКР и штатных ТВС совпадает с вариантом "БР-1200". Для моделей "ОЯТ ВВЭР", "БН-1200" введены корректировки использования ПКР.
- ✓ Рассмотренные изотопные составы: "БН-1200", "ОЯТ МОХ ВВЭР", "ОЯТ ВВЭР" позволяют использовать геометрию проектной активной зоны БР-1200.
 При использовании плутония бланкета БН-800 потребуется изменение геометрии активной зоны.
- ✓ При использовании изотопных составов: "БН-1200", "ОЯТ МОХ ВВЭР", "ОЯТ ВВЭР" необходимо строго соблюдать сроки ввода энергоблока в эксплуатацию. Задержка приводит к существенной потере реактивности активной зоны, опережение завышает запас реактивности.

Спасибо за внимание

Контакты: Хахулин Влад Игоревич Инженер отдела физических исследований и анализа ядерной безопасности АО «НИКИЭТ» hahulin_vi@nikiet.ru