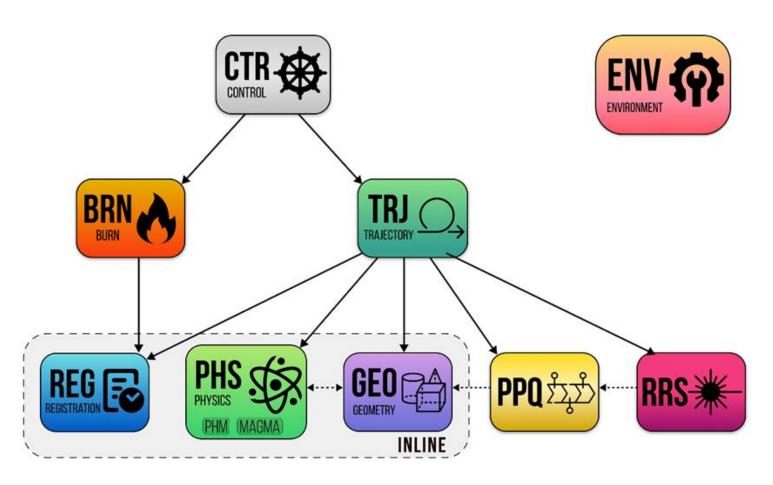


Федеральное государственное бюджетное учреждение «Национальный исследовательский центр» «Курчатовский институт»

Программный комплекс КИР и его возможности

<u>Белоусов В.И.</u>, Гомин Е.А., Гуревич М.И., Давиденко В.Д., Дудкин К.О., Дьячков И.И., Иоаннисиан М.В., Малков М.Р., Писарев А.Н., Чернов К.Г.



Введение

- На данный момент одной из наиболее сложных задач реакторной физики является решение уравнения переноса нейтронов для размножающих систем (активная зона реактора, ЯЭУ и др.) с пространственно-временной зависимостью с учётом обратных связей по параметрам размножающих систем, таких как теплогидравлика, термомеханика, контур и др.,.
- Современные вычислительные средства позволяют проводить нейтронно-физические расчёты с использованием методов Монте-Карло, как с приближениями (адиабатическое, многозонное, квазистатическое), так и прямым моделированием с отслеживанием расширенного фазового пространства частиц с временной зависимостью без приближений.
- Прямой метод Монте-Карло позволяет обойти ограничения, характерные для детерминистических методов, связанные с дискретизацией по пространству, энергии и углам.

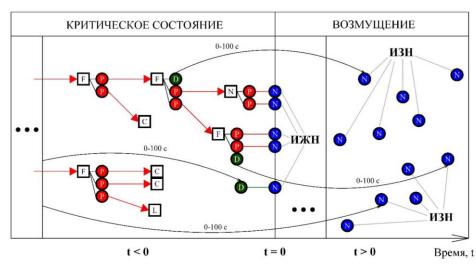
Архитектура программы КИР



История программы КИР

В настоящее время разработан физический модуль РНМ (язык программирования С++).

Модули (ФОРТРАН), кроме BRN, созданы в парадигме ООП с применением стандарта 2008 года и inline(встраиваемых) функций.


4

Модуль источника нейтронов для решения задачи кинетики нейтронов прямым методом Монте-Карло

Процесс нейтронной кинетики задаётся пространственно-временным распределением источника нейтронов $Q(r,E,\Omega,t)$, которое можно разыграть с использованием разных методов.

В общем случае методы розыгрыша источника нейтронов разделяются условно по типу решаемых задач: с внешним источником нейтронов и с вводом реактивности в критическое состояние системы.

Распределение источника нейтронов в момент времени t = 0

$$N(\mathbf{r}, E, \Omega) = \frac{\Phi(\mathbf{r}, E, \Omega)}{\upsilon(E)}$$

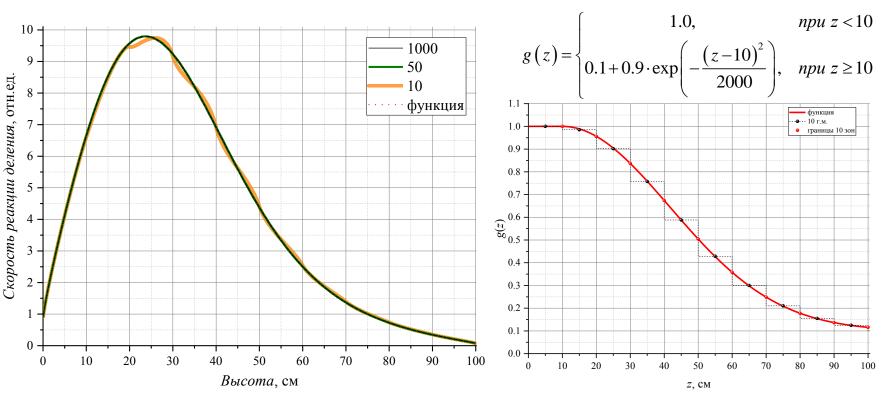

Распределение ядер предшественников запаздывающих нейтронов в момент времени t = 0

Схема источника для задачи ввода реактивности в критическое состояние системы

Непрерывная плотность

Модель бесконечной решётки твэлов ВВЭР

Изменение скорости деления по высоте

Изменение плотности воды (множитель) по высоте

Верификация и Быстродействие

Проведена валидация физического модуля в составе КИР по экспериментальным данным стационарных (ICSBEP) и реакторных (IRPhEP) сборников, а также данным, представленным в открытых публикациях (~700 вариантов). Расчёты параметров: $K_{9\phi\phi}$ (~600), $\beta_{9\phi\phi}$ (~20), Росси- α (~50), Λ (~10).

INF200 – бесконечная среда, состоящая из 200 нуклидов

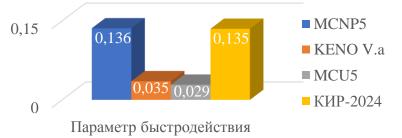
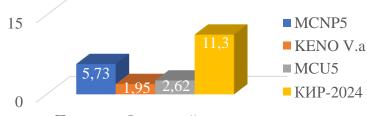
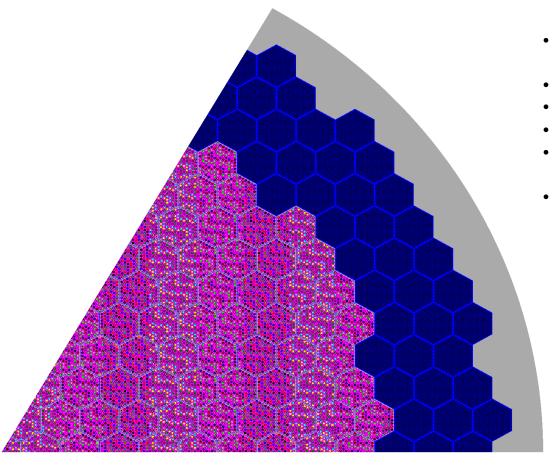



Figure-Of-Merit — показатель скорости расчёта методом Монте-Карло (параметр быстродействия):

$$FOM = \frac{1}{t \cdot \sigma^2}$$



11.07.2024 Параметр быстродействия

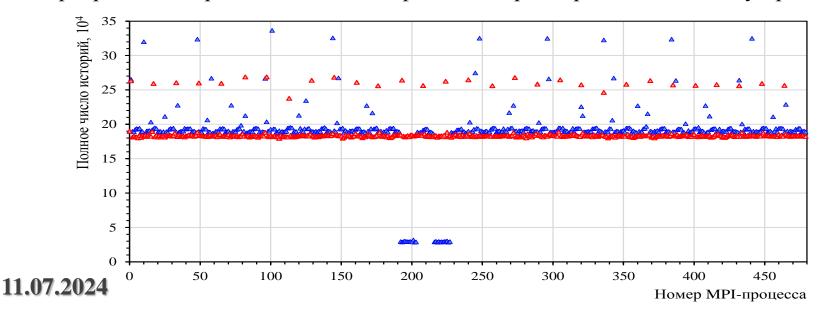
7

Возможности физического модуля

Выгоревшее состояние ВВЭР-440:

- ~500 тыс. материалов, разбиение на 42 слоя
- ~200 нуклидов в каждом материале
- Симметрия 60°
- Температура топлива от 640 до 1120 К
- Для метода ТПК сечения насчитаны с шагом 100 К
- Регистрация $K_{9\phi\phi}$ и распределений энерговыделения в каждом твэле (42 слоя по высоте)

Методы моделирования температурной зависимости сечений


Полиномы	ТПК
Оперативная память - 3,2 Гб	Оперативная память - 5 Гб

Использование полиномов замедляет решение задачи на ~10-20%

Модуль банка частиц

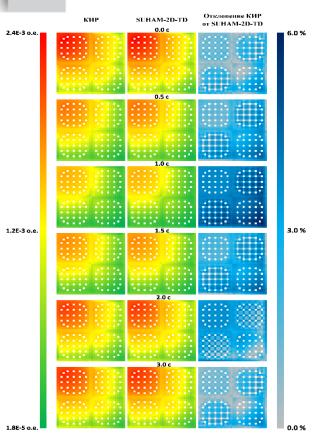
- В программе КИР был реализован Параллельный Алгоритм Франк-Каменецкого (ПАФК) для поддержания размера пакета частиц в методе поколений.
- Данный алгоритм применяется для «объединённого массива» источника нейтронов деления со всех процессов, задействованных для MPI-расчёта.
- В модуле банка частиц разработаны методы параллельной нормировки, балансировки размера пакета МРІ-процесса в соответствии со скоростью счёта и перекрестной пересылки массивов фазовых параметров частиц между процессами.

Результаты распараллеливания **АФК**

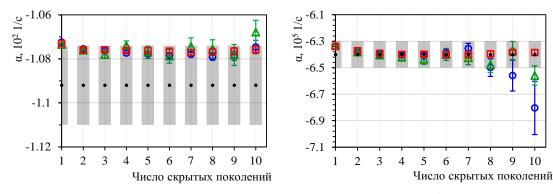
Результаты расчёта ячейки ВВЭР на тестовом кластере: персональный компьютер, рабочая станция и ноутбук

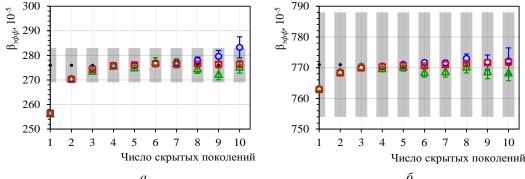
Тип моделирования	Κ _{эφφ}	Время, мин.
ПАФК с балансировкой	0.8463(1)	34
Стандартный АФК	0.8464(1)	81

Результаты расчёта на суперкомпьютере НРС4 и НРС5


Тип моделирования	Кластер	К _{эфф}	Время, мин.
ПАФК с балансировкой	HPC4	0.8463(1)	19
	HPC5	0.8463(1)	11
Стандартный АФК	HPC4	0.8464(1)	124
	HPC5	0.8464(1)	10

Задача «Keff Of The World»

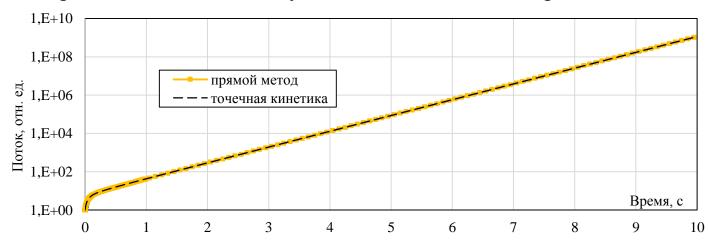

Тип моделирования	Заданное число частиц в пакете	число частиц в пакете (экв)	Число серий (экв)	К _{эфф}	Время, мин.
	100	100	9999840	0.93889(4)	6.4
	200	200	5000160	0.95438(4)	5.9
CTOURONTUOS CYOMO C AMP	1000	1000	999840	0.99708(4)	6.1
Стандартная схема с АФК	6000	6000	166560	0.99980(4)	7.9
	12000	12000	83520	1.00007(4)	11.0
	48000	48000	20833	1.00014(4)	24.2
	100	48000	20833	1.00028(4)	9.5
	200	96000	10417	1.00006(4)	8.7
ПАФК	1000	480000	2083	1.00022(4)	7.9
	6000	2880000	347	1.00024(4)	9.1
	12000	5760000	174	1.00019(4)	11.4
	48000	23040000	43	1.00024(4)	25.5


Модуль регистрации функционалов

Результаты кросс-верификации расчётов изменения радиального распределения энерговыделения во времени

 α (Росси-Альфа) для бенчмарков stacy-215 (a) и jezebel-pu (б)

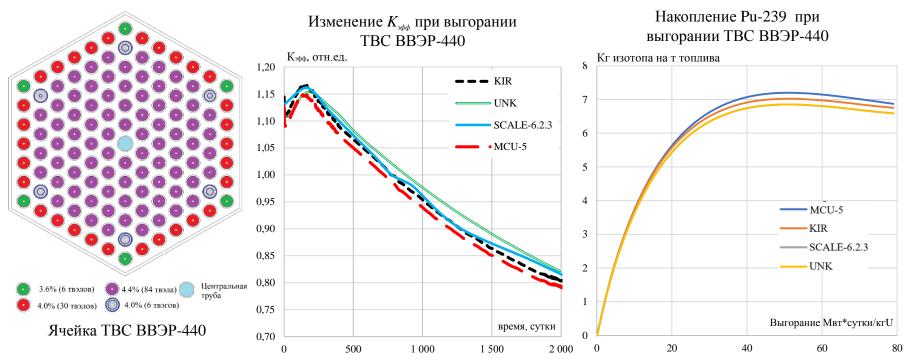
 β_{abd} для бенчмарков flattop-pu (a) и tca-u-1.83b (б)


Обозначения:

метод Усачёва-Гурвица (\bigcirc); ББП (\triangle); БСП (\square); экспериментальное значение и погрешность (\blacksquare).

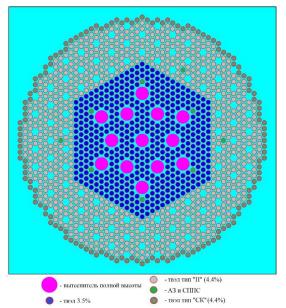
Транспортный модуль

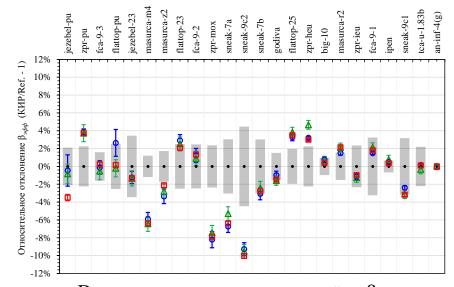
- Модуль обеспечивает связь между геометрическим, физическим и регистрационными модулями и проводит моделирование траекторий частиц, а в случае нейтронной кинетики моделирование развития цепочки нейтронов от прародителя.
- Реализация алгоритмов моделирования процессов выполнена с использованием inline функций.
- Добавлены функции неаналогового моделирования кинетики нейтронов для расчёта систем с высоким уровнем изменения мощности (до 10⁹), при котором происходит переполнение банка в случае аналогового моделирования.


12

Модуль нуклидной кинетики

В программе КИР используется модуль нуклидной кинетики (выгорания), который изначально был разработан для программного комплекса UNK в НИЦ «Курчатовский институт».

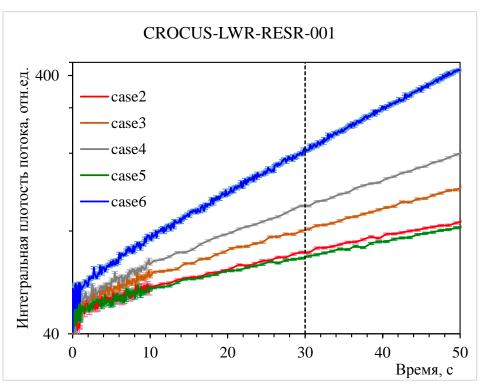

Проведены кросс-верификационные расчёты выгорания для моделей реакторов ЖСР и ТВС ВВЭР-440.


Валидация по стационарным экспериментам

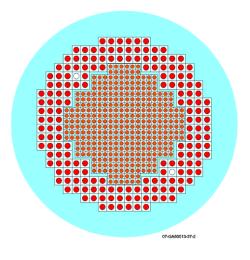
Критстенд П. Эксперимент для ВВЭР-С*

	Dreamany	КИ	ďР	MCNP	
Параметр	Экспери- мент	I HNDF/R-	РОСФОНД	ENDF/B-	
		VII.1	госфонд	VII.1	
$K_{9\varphi\varphi}$	1	1.00020(2)	1.00014(2)	1.00020(2)	
Нег, см	65	64.9	66.0	65.2	

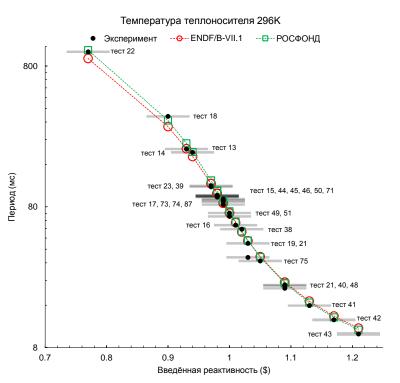
^{*}описание эксперимента предоставлено Цыгановым С.В.

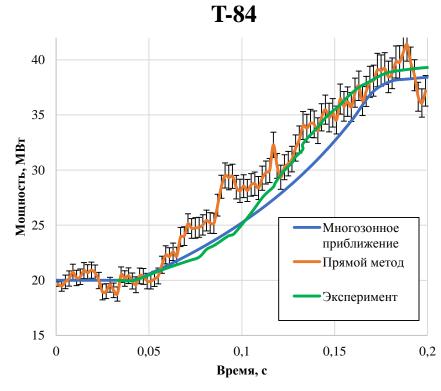

Валидация алгоритмов расчёта $\beta_{9\phi\phi}$: метод Усачёва-Гурвица (\circ); ББП (\triangle); БСП (\square); экспериментальное значение (\bullet)

ZR-6 (150 экспериментов, расчёты $K_{_{\! >\! \phi\phi}}$)

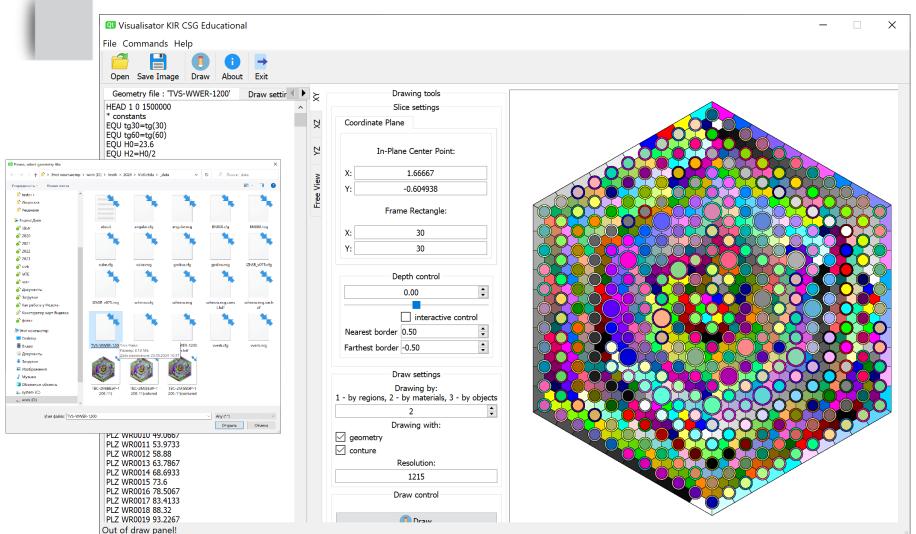

Бибилиотека	сред. знач. δ, %	Ср.кв.знач. σ, %
ENDF/B-VII.1	-0,08	0,36
РОСФОНД	-0,06	0,41

Валидация по нестационарным процессам (CROCUS)

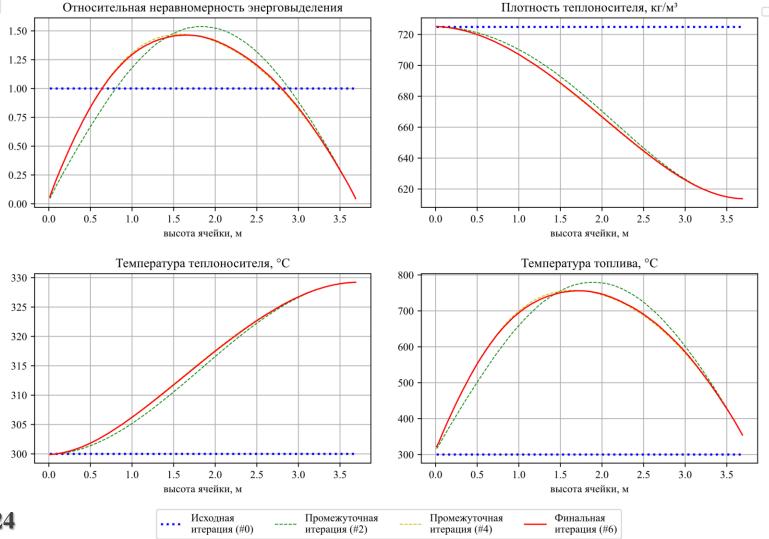

Результаты расчёта прямым методом Монте-Карло изменения плотности потока вследствие ввода реактивности


	Обратный период 10 ⁻² с ⁻¹			
CROCUS		КИР, Росфонд		
	Эксперимент	Прямой метод Монте- Карло	Адиабатичес- кое приближение	
case 2	1.34(2)	1.35(3)	1.36	
case 3	1.81(3)	1.72(3)	1.82	
case 4	2.34(4)	2.33(4)	2.34	
case 5	1.29(8)	1.31(3)	1.26	
case 6	3.30(9)	3.64(5)	3.56	

Валидация по нестационарным процессам (SPERT-III)


Результаты расчёта зависимости периода от введенной реактивности и его сравнение с экспериментальными значениями (на основе уравнения обратных часов)

Результаты расчёта изменения мощности без учёта обратных связей для эксперимента Т-84 (библиотека РОСФОНД)



Визуализатор КИР

КИР и OpenFOAM

Результаты расчёта твэла ВВЭР-1000

Заключение

Разработан код КИР-С, позволяющий проводить стационарные и нестационарные расчёты (нейтронной кинетики) на основе современных методов Монте-Карло применительно к реакторам типа ВВЭР-С и ВВЭР-1000, -1200.

Разработанные методы и алгоритмы позволяют проводить расчёт нейтронной кинетики в адиабатическом и многозонных приближениях, а также прямым методом Монте-Карло.

Результаты верификации и валидации подтверждают адекватность разработанных методик и хорошее совпадение с экспериментальными данными.

Создан инструмент для выполнения реперных (прецизионных) нейтронно-физических расчётов как стационарных, так и нестационарных (кинетических), что позволяет создать банк реперных расчётов, в том числе и в перспективе динамических расчётов, при наличии связки с теплогидравлической программой.

Спасибо за внимание!

