

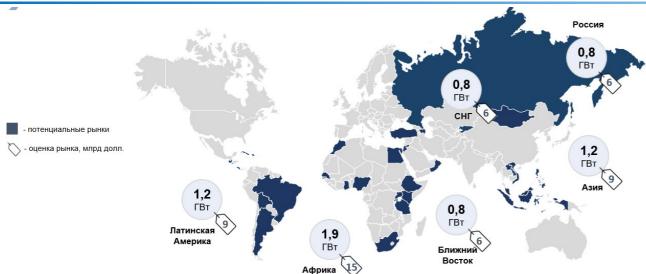
Реакторные установки для атомных станций малой мощности разработки АО "ОКБМ Африкантов"

Научно-практическая конференция "Нейтронно-физические проблемы атомной энергетики (Нейтроника-2024)"

Фадеев Юрий Петрович Главной конструктор РУ ВВР АО «ОКБМ Африкантов»

г. Обнинск, 28-31 мая, 2024 г.

Потребность АСММ в России и мире


Потенциальная потребность в АСММ в России

до **1,15** ГВт *(до 2040 года)*

Возможные районы размещения проектов, присутствие интереса со стороны потребителей и региона:

- 1. Промышленные и муниципальные потребители в технологически изолированных от энергосистемы районах РС(Я)
- 2. Промышленный потребитель **Баимский ГОК**
- 3. Возможное замещение мощности Кольской АЭС (как выводимых ВВЭР-440)
- 4. Потребители **Вилючинского городского округа,** в т.ч. СПГ проекты
- 5. Энергоснабжение **«Восточного полигона»**, **объектов РЖД (БАМ)**, **месторождения Сухой лог** и др. крупных предприятий
- 6. Потребители **Калининградской обл.**

Объем доступного мирового рынка

оценивается до 6,8 ГВт на горизонте до 2040 г., что в денежном эквиваленте около 51 млрд. \$

Потенциал ГК «Росатом» с учетом предложения других игроков составляет до 20% глобального мирового рынка, при условии реализации пилотного проекта в ближайшие 6÷8 лет

Атомный ледокольный флот России

- Россия является единственной страной в мире, обладающей действующим гражданским атомным флотом.
- За более чем 60-летний период работы в суровых условиях Арктики сформировался самостоятельный вид судовых реакторных установок малой мощности, отличающихся компактностью, повышенной маневренностью, надежностью и относительной простотой технических решений.
- У К настоящему времени создана и функционирует инфраструктура, обеспечивающая строительство, эксплуатацию, все виды технического обслуживания, включая перегрузку и обращение с ядерным топливом, а также вывод из эксплуатации атомных ледоколов и их реакторных установок.
- У Источники электрической и тепловой энергии на основе именно судовых реакторных технологий позволяют обеспечить устойчивое промышленное развитие и успешное решения социальных вопросов удаленных регионов с децентрализованным энергоснабжением.

Атомные станции малой мощности

АО «ОКБМ Африкантов»

- главный конструктор и изготовитель РУ, комплектный поставщик энергоустановок для наземных и плавучих ACMM
- головная организация по проектам наземной и плавучей АСММ

наземная асмм

ПЛАВУЧИЙ ЭНЕРГОБЛОК

POCATOM

Преимущества плавучих АСММ

- * Компактный размер, позволяющий размещение в удаленных районах и на ограниченных площадках
- **Строительство и испытания плавучего энергоблока в необходимом объеме осуществляются на судостроительном заводе**
- Минимальный объем капитального строительства на площадке.
 Отсутствие на площадке, оборудования важного для безопасности
- **❖** Длительный срок эксплуатации без перегрузок топлива, отсутствие операций по обращению с ядерным топливом на площадке
- Имеется необходимая инфраструктура для обеспечения эксплуатации
 ПЭБ на всех этапах жизненного цикла: техническое обслуживание,
 перегрузка, ремонт и утилизация
- ПЭБ могут работать в режиме отслеживания нагрузки, диапазон маневрирования от 10 до 100 % Nном, проектная скорость маневрирования до 1 %/с
- ❖ Возможность перемещения ПЭБ с одной площадки размещения на другую
- **Минимальные затраты на реновацию площадки размещения**

Жизненный цикл плавучих энергоблоков

Перемещение на место эксплуатации

- **1, 2 –** Строительство ПЭБ и первая загрузка на заводестроителе в РФ
- 3 Перемещение к месту эксплуатации
- **4 –** Выработка электроэнергии на площадке эксплуатации (межперегрузочный период до 10 лет)
- **5** Возвращение на специализированное предприятие РФ для перегрузки и обслуживания
- **6** Перегрузка и обслуживание на специализированном предприятии

Перемещение для обслуживания и перегрузке

Мощностной ряд АСММ с РУ АО «ОКБМ Африкантов»

	, .				
Наименование	ПАТЭС с РУ КЛТ-40С	МПЭБ с РУ РИТМ-200С	ОПЭБ с РУ РИТМ-200М	ПЭБ с РУ РИТМ-400М	АСММ с РУ РИТМ-200Н
Мощность РУ, МВт	2×150	2×198	2×198	2×340	1×190
Мощность, выдаваемая потребителю	2×35 МВт и 2×73ГКал/ч	2×53 МВт	2×50 МВт	2×87,5 МВт	1×50 МВт
Ресурс (проектный), тыс. ч	300	340	510	340	495
Энергоресурс а.з., ТВт·ч (Количество ТВС в а.з., шт)	2,1 (121)	8 (199)	10,5 (241)	13,5 (313)	8 (199)
Масса, т	3 743 (2 РУ)	2 300 (2 РУ)	2 600 (2 РУ)	4 560 (2 РУ)	1 500 (1 РУ)
Периодичность перегрузок, лет	2,5 - 3	6	8	5	6
Статус проекта	• 22.05.2020 – ПАТЭС введена в промышленную эксплуатацию в г. Певек (Чукотский АО). • 2023 – первая перегрузка а.з.	 Разработаны ТП, ООБ и РКД 2022 – проведен НТС ГК «Росатом», проект утвержден директором СМП 2023 – экспертиза экономических параметров проекта от ВНИИАЭС Ведется изготовление оборудования 	 2020 – разработан эскизный проект 2023 - 2024 – разработка технического проекта 	 Сформирован паспорт проекта 2022 - 2024 – разработка технического проекта 	 2022 — разработан технический проект 2023 – получена лицензия на размещение ядерной установки 2023 — разработан ТП комплекса оборудования обращения с ЯТ

ПЭБ «Академик Ломоносов» (проект 20870)

СТАТУС ПРОЕКТА

- ✓ 22.05.2020 ПАТЭС введена в промышленную эксплуатацию в г. Певек (Чукотский АО).
- ✓ В настоящее время ПЭБ выработал более 370 млн кВт*ч электроэнергии и более 100 тыс. ГКал тепловой энергии

Длина, м	140	
Ширина, м	30	
Осадка, м	5,6	
Водоизмещение, т	21 000	
Базирование	Прибрежное	
Тип судна	Стоечное	

Базовые решения

✓ Пилотный проект, который проектировался с 1995 г. на основе РУ блочного типа предыдущего поколения ледоколов и имеет следующие отличия:

тинновационная кассетная активная зона с металлокерамическим топливом низкого обогащения (для соблюдения режима нераспространения ядерного оружия)

-новый комплекс систем безопасности, удовлетворяющий современным НД

✓ В связи с ограничением энергоресурса а.з. 2,1 ТВт·ч в составе ПЭБ предусмотрены собственные перегрузочный комплекс и хранилище ядерного топлива, которые:

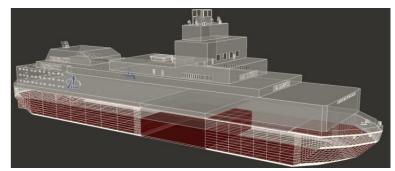
-позволяют выполнять операции с HTBC и ОЯТ в пределах ПЭБ (отсутствие операций по обращению с ОЯТ на площадке размещения вне энергоблока)

-увеличивает затраты Электрическая мощность, МВт	70 (нетто)
Тепловая мощность РУ, МВт	2 × 150
Срок службы, лет	40
Период между перегрузками, лет	2,5 - 3

Следующее поколение плавучих энергоблоков

Серия УАЛ проекта 22220 с РУ РИТМ-200

- ▶Принципиально новая интегральная РУ, обладающая уникальным сочетанием высокой мощности, безопасности и компактности.
- Парогенерирующий блок с интегрированными в корпус компактными парогенераторами, характеризующийся оптимальной компоновкой оборудования первого контура, минимальными массой и габаритами РУ при высокой мощности и увеличенном энергоресурсе активной зоны


ПГБ РУ РИТМ-200

Семейство энергоблоков на основе интегральных реакторов

ОПЭБ с двумя РУ РИТМ-200М



ПЭБ с двумя РУ РИТМ-400М

- Увеличена мощность
- Разработаны новые турбины
- ✓ Разработаны интерметаллидные и металлокерамические активные зоны для внутреннего и внешнего рынков
- Унифицированное оборудование и технические решения

Технологический прогресс плавучих энергоблоков при переходе от блочной к интегральной РУ

ПГБ РУ КЛТ-40С (ПЭБ «Академик Ломоносов»)

Электрическая мощность ПЭБ, МВт	увеличение в 1,5 раза (со 2x38,5 МВт до 2x58 МВт)
Назначенный ресурс заменяемого оборудования, тыс. ч	увеличение в 1,7 раза (со 100 тыс. ч до 170 тыс. ч)
Назначенный ресурс незаменяемого оборудования, тыс. ч	увеличение в 1,13 раза (со 300 тыс. ч до 340 тыс. ч)
Энергоресурс активной зоны, ТВт·ч	увеличение до 3,8 раз (с 2,1 ТВт·ч до 8,0 ТВт·ч)
Масса блока из двух РУ, т	уменьшение в 1,6 раза (с 3740 т до 2300 т)

ПГБ РУ РИТМ-200С (МПЭБ)

В итоге, переход к интегральной РУ существенно улучшает экономические показатели энергоблока

МПЭБ с РУ РИТМ-200С (проект 20871)

4 МПЭБ с РУ РИТМ-200С в арктическом исполнении для Баимской рудной зоны (ГОК Баимский), Чукотский АО

СТАТУС ПРОЕКТА

- ✓ разработаны ТП, ООБ и РКД
- ✓ 2022 г. проведен НТС ГК «Росатом», проект утвержден директором СМП
- ✓ ведется изготовление оборудования

Длина , м	143,3
Ширина, м	30
Осадка, м	5,5
Водоизмещение, т	21 261
Базирование	Прибрежное
Тип судна	Стоечное

Базовые решения

- ✓ С учетом сроков реализации проекта (2027 г.) принято компромиссное решение:
 - РУ является форсированным аналогом РИТМ-200 (с максимальным заимствованием оборудования)
- Корпус МПЭБ выполнен аналогично ПЭБ пр. 20870
- ✓ Разработана новая активная зона с увеличенным энергоресурсом
- Разработана новая ПТУ
- Сохранены жилой блок, формы корпуса и устройств жесткой швартовки
- ✓ Исключены перегрузочное оборудование и хранилище ОЯТ, нет обращения с ядерным топливом на площадке станции. Перегрузка осуществляется на специализированном предприятии

Электрическая мощность, МВт	106 (нетто)
Тепловая мощность РУ, МВт	2 × 198
Срок службы, лет	40
Период между перегрузками, лет	6 11

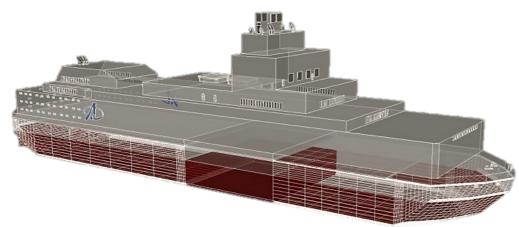
ОПЭБ с РУ РИТМ-200М (проект 23870)

Проект ОПЭБ с РУ РИТМ-200М в тропическом исполнении для зарубежных рынков

СТАТУС ПРОЕКТА

- ✓ 2020 г. разработан эскизный проект
- ✓ разработка ТП в 2023 2024 гг.

Длина, м	120
Ширина, м	32,4
Осадка, м, не более	7
Базирование	Прибрежное
Тип судна	Стоечное


Базовые решения

- ✓ В полной мере выполнена оптимизация для достижения максимальной экономической эффективности
- У РИТМ-200М с интегральным ПГБ на основе новой активной зоны увеличенного энергоресурса
- ✓ Обеспечение безопасности пассивными системами без ограничения по времени
- Универсальная частота электричества − 50/60 Гц (в зависимости от площадки)
- ✓ Исключение с борта судна жилого блока, хранилища ОЯТ и перегрузочного оборудования, нет обращения с топливом на площадке размещения, перегрузка совмещается с ремонтом на судостроительном предприятии. Персонал проживает на берегу

Электрическая мощность, МВт	100 (нетто)
Тепловая мощность РУ, МВт	2 × 198
Срок службы, лет	до 60
Период между перегрузками, лет (совмещен с периодами заводских ремонтов)	8 12

ПЭБ с РУ РИТМ-400М (проект 20873)

ПЭБ с РУ РИТМ-400М в арктическом исполнении

СТАТУС ПРОЕКТА

- ✓ сформирован паспорт проекта
- ✓ разработка ТП в 2022 2024 гг.

Длина, м	165	
Ширина, м	33	
Осадка, м	6,68	
Водоизмещение, т	30 500	
Базирование	Прибрежное	
Тип судна	Стоечное	

Базовые решения

- ✓ Является следующим шагом в мощностной линейке ПЭБ:
- Увеличены габариты и мощность ПГБ и ПТУ
- Сохранены основные технические решения РУ РИТМ-200 для УАЛ и РУ РИТМ-400 для ледокола Лидера
- ✓ Исключение перегрузочного оборудования и хранилища ОЯТ, нет обращения с ядерным топливом на площадке станции. Перегрузка осуществляется на специализированном предприятии
- ✓ Сохранен жилой блок

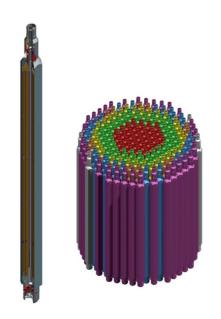
Электрическая мощность, МВт	180 (нетто)
Тепловая мощность РУ, МВт	2 × 340
Срок службы, лет	до 60
Период между перегрузками, лет	5

Наземная АСММ с РУ РИТМ-200Н

A	POCAT	ГОМ
---	-------	-----

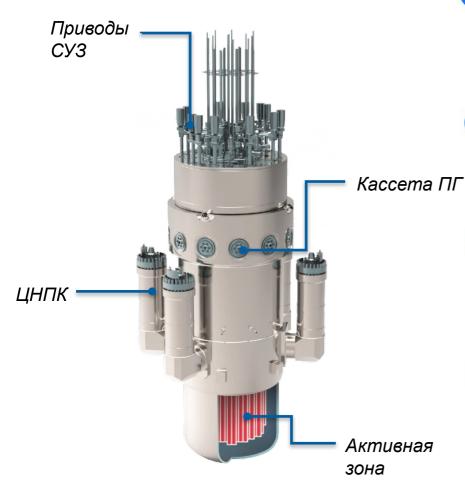
Электрическая мощность, МВт (брутто)	55
Площадь станции, акров (км²)	30 (0,12)
Период между перегрузками, год	6
Срок эксплуатации, год	60
Работа по графику нагрузки в диапазоне мощности в %N _{ном}	30 - 100
Коэффициент технического использования за срок службы реакторной установки	0,9

СТАТУС ПРОЕКТА


- **2018 г.** разработан обликовый проект ACMM с РУ РИТМ-200Н №8370-01 от 28.08.2018
- **2019 г.** выполнены технико-экономические исследования строительства АСММ в Якутии. Инв.№ 435-01-ТЭИ от 28.09.2019
- **2020 г.** утверждена ДОН по сооружению АСММ с РУ РИТМ 200Н в Якутии. Приказ ГК Росатом от 04.12.2020г № 1/1612-П
- 2021 г. разработаны материалы ОБИН по сооружению АСММ с РУ РИТМ-200Н в Якутии;
- 2022 г. разработан технический проект РУ РИТМ-200Н;
- 2022 г. проведена экспертиза материалов ОБИН по сооружению АСММ с РУ РИТМ-200Н в Якутии.
- 2023 г. получена лицензия на размещение ядерной установки для объекта: энергоблок №1 Якутской АСММ
- (п. Усть-Куйга, Усть-Яннский улус) №ГН-01-101-4428 от 21.04.2023 г.;
- 2023 г. разработан технический проект комплекса оборудования обращения с ЯТ.

Отработанность технических решений РУ АСММ

Активная зона ПЭБ



✓ Апробированность и унификация технических и конструктивных решений РУ:

- -Два варианта активных зон: интерметаллидная (внутренний рынок) и металлокерамическая (внешний рынок с учетом требований по нераспространению ядерного оружия),
 - ¬ТВС конструктивно аналогичны РУ РИТМ-200 и КЛТ-40С (увеличена длина),
 - -Интегральный ПГБ с компактными ПГ,
 - -Герметичный ЦНПК,
 - -Парогенерирующий элемент,
 - -Приводы СУЗ все решения заимствованы,
 - -СИ, арматура, теплообменное и насосное оборудование,
 - -Конструкционные материалы систем и оборудования,
 - -Состав и структура систем РУ;
- ✓ Сформирована кооперация предприятий проектировщиков и изготовителей всего оборудования РУ, имеющих опыт работ, необходимые производственные мощности и технологическое оснащение; налажено серийное производсто;
- **√** Применение унифицированных узлов в перегрузочных комплексах и средствах технического обслуживания РУ типа РИТМ.

Парогенерирующий блок

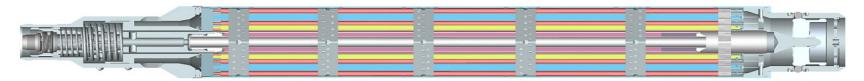
Интегральная компоновка основного оборудования:

активная зона с парогенератором объединены в едином корпусе. ЦНПК установлены в гидрокамеры, соединенные с центральным корпусом с помощью коротких силовых патрубков.

Первый контур выполнен герметичным,

с применением сварных соединений, герметичных бессальниковых насосов и герметичной сильфонной арматуры. Протяженность трубопроводов контура сокращена до минимума.

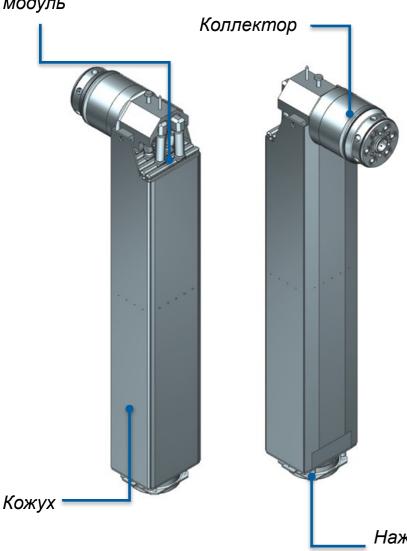
Интегральная компоновка ПГБ обеспечивает практически **неограниченный радиационный ресурс корпуса**, значительно увеличенные резервы времени в запроектных авариях с течью теплоносителя первого контура, в том числе при обесточивании.


Размеры интегрального ПГБ обеспечивают возможность транспортировки корпуса ПГБ в сборе (с приваренными гидрокамерами) железнодорожным транспортом.

За счет сборки ПГБ на машиностроительном заводе существенно сокращается время на проведение монтажных работ на заводестроителе.

Активная зона

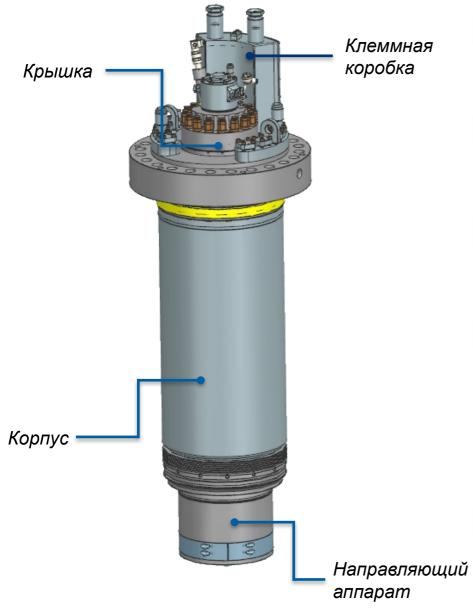
Наименование параметра	КЛТ-40С	РИТМ-200С	РИТМ-200М	РИТМ-400М	РИТМ-200Н
Количество ТВС, шт.	121	199	241	313	199
Высота активной зоны, мм	1200	1650	1650	1650	1650
Энергоресурс, ТВт · ч	2,1	8	10,5	13,5	8
Вид топлива	Маталло- керамика	Интерметаллид	Маталло- керамика	Интерметаллид	Маталло- керамика
Материал оболочки ТВЭЛ	Сплав Э110	Сплав 42ХНМ	Сплав 42ХНМ	Сплав 42ХНМ	Сплав 42ХНМ


Для использования на территории России предусмотрено интерметаллидное топливо с высоким обогащением. Для зарубежных площадок - металлокерамическое топливо с обогащением <20% по U-235

Во всех проектах предусмотрена «контейнерный» способ перегрузки а.з. Перегрузка а.з. предусмотрена только целиком.

Парогенератор

Парогенерирующий модуль



- Создан уникальный инновационный парогенератор (ПГ) размещающийся в корпусе интегрального реактора.
- У Характеризуется исключительно высокой компактностью, эффективностью, надежностью, безопасностью.
- По сравнению с действующими аналогами при равной паропроизводительности новый ПГ имеет:
 - в три раза уменьшенный объем;
 - в два раза уменьшенную массу;
 - в два раза сниженное количество переходников «сталь-титан»;
 - в два раза меньшее количество проходок в корпусе реактора;
 - отсутствие контакта питательных труб с теплоносителем первого контура.
- оздано современное производство по серийному изготовлению парогенераторов подобного типа.

Нажимное устройство

Циркуляционный насос первого контура

- Циркуляционный насос первого контура представляет собой моноблочный герметичный агрегат, состоящий из осевого насоса и герметичного асинхронного электродвигателя.
- Возможны варианты односкоростного или двухскоростного исполнения путем изменения количества обмоток электродвигателя или установкой преобразователя частоты.
- Во всех эксплуатирующихся и проектирующихся насосах применены усовершенствованные подшипники с парой трения из силицированного графита.
- Смазка и охлаждение подшипников, а также охлаждение элементов электродвигателя осуществляется водой автономного контура, перекачиваемой вспомогательным колесом. Тепло с автономного контура снимается охлаждающей водой, циркулирующей через холодильник электронасоса.
 - Все ЦНПК в составе судовых РУ успешно эксплуатируются без разбора и ремонта.

Обеспечение безопасности Концепция безопасности

Нормативная документация

- АСММ разрабатываются в соответствии с Российскими нормативными требованиями Ростехнадзора, а также при разработке ПЭБ учитываются правила РМРС.
- Для наземных ACMM обеспечивается учет требований МАГАТЭ в области безопасности АЭС. Для плавучих ACMM международная нормативная база отсутствует, поскольку за пределами Российской Федерации плавучих АС не существует. Ведется работа по созданию такой нормативной документации.

Внутренняя самозащищенность

• Комплекс технических решений, препятствующий выходу реакторной установки за пределы нормальной эксплуатации, а в аварийном режиме облегчающий протекание аварии.

Активные системы безопасности

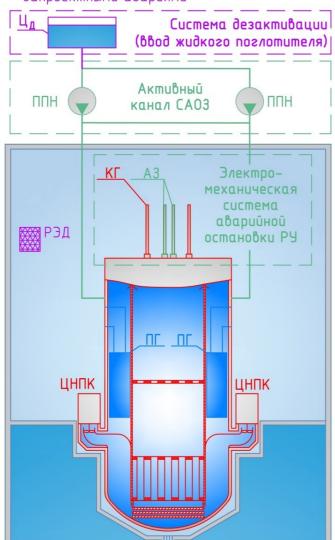
- Комплекс активных систем, обеспечивающий безопасность реакторной установки во всех типах проектных и запроектных аварий при наличии электропитания.
- Запас времени работы аварийной системы электроснабжения 30 суток.

Пассивные системы безопасности

• Комплекс пассивных систем, обеспечивающий безопасность реакторной установки в условиях отсутствия электроснабжения.

Специальные технические средства для управления запроектными авариями

- Комплекс систем, предназначенных для облегчения протекания запроектных аварий в условиях массового отказа систем реакторной установки.
- Использование самосрабатывающих устройств обеспечивает отработку алгоритмов безопасности при полном выходе из строя систем управления.


Физические барьеры

• Комплекс физических барьеров, обеспечивающий локализацию радиоактивных веществ внутри защитной оболочки в авариях с разгерметизацией системы первого контура.

Обеспечение безопасности при реактивностных авариях

- Системы нормальной эксплуатации
- Системы безопасности
- Средства управления авариями
- Специальные технические средства управления запроектными авариями

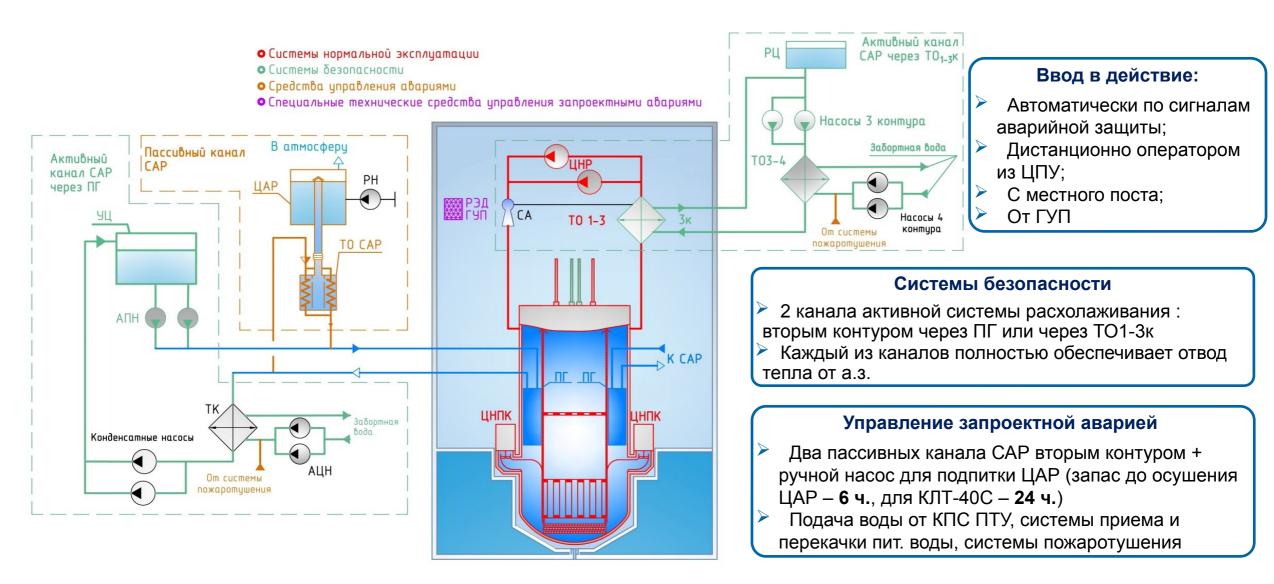
Внутренняя самозащищенность

- Отрицательные коэффициенты реактивности
- Применение стержней-поглотителей без борного регулирования

Системы безопасности

- 2 подсистемы электромеханической аварийной остановки РУ:
- РО АЗ, 6 шт. (сброс под действием разгоняющих пружин);
- РО КГ, 12 шт. (электродвигателем или самоходом под действием собственного веса)

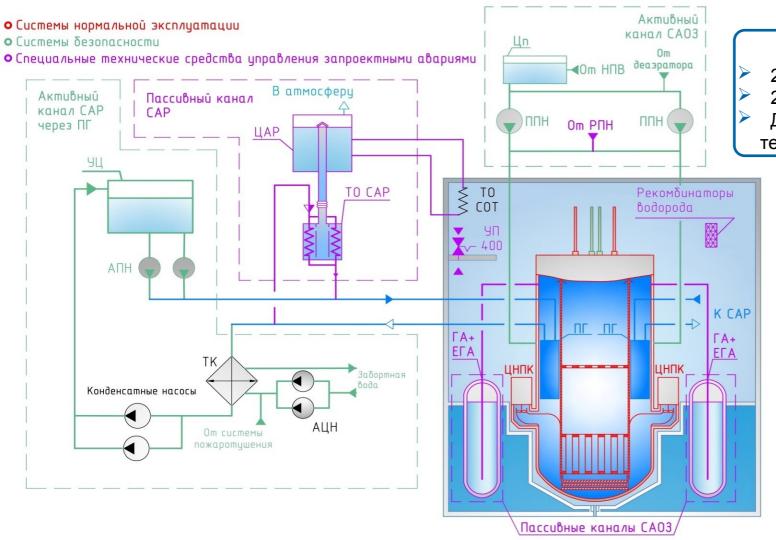
Ввод в действие:


- автоматически по сигналам аварийной защиты или от кнопки «АЗ» (оператором);
- дистанционное управление приводами КГ оператором от ШД или персоналом от ручного привода

Специальные технические средства управления запроектными авариями

- Ввод жидкого поглотителя.
- Обесточивание приводов СУЗ при срабатывании РЭД по прямому воздействию аварийного давления первого контура.

Обеспечение безопасности при теплоотводных авариях



[✓] Предусмотрены индивидуальные каналы четвертого контура с АЦН для каждой РУ.

Обеспечение безопасности при авариях с разгерметизацией первого контура

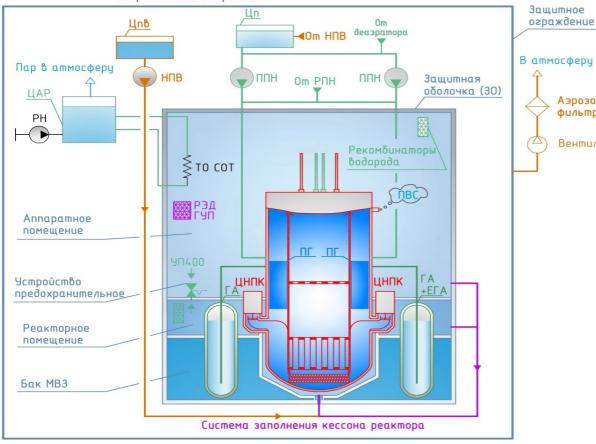
Системы безопасности

- 2 активных канала САОЗ (от ППН)
- 2 канала расхолаживания через ПГ
- Двойная локализующая арматура (при межконтурной течи)

Ввод в действие:

- Автоматически по сигналам АЗ «Рпроливка»
- Дистанционно оператором из ЦПУ
- С местного поста (за пределами 3O)

Управление запроектной аварией


- Два пассивных канала САР вторым контуром
- Два пассивных канала САОЗ с ГА и ЕГА
- Обеспечено время до осушения а.з.* ~24 ч.
 для КЛТ-40С ~10 ч.)
- Подача воды от КПС ПТУ. в ПГ и ПГБ через СОиР и САОЗ

^{*} Максимально возможный масштаб разгерметизации в соответствии с концепцией течь перед разрушением (DN4)

Обеспечение безопасности при управлении тяжелой аварии

- Системы нормальной эксплуатации
- Системы безопасности
- Средства управления авариями
- Специальные технические средства управления запроектными авариями

Система безопасности

- Рекомбинаторы водорода в 30
- Система снижения аварийного давления

Ввод в действие:

- Автоматический ввод в действие ССАД при течи 1 контура без сигнала управления
- Дистанционно оператором из ЦПУ
- С местного поста (за пределами 30)

Специальные технические средства управления авариями

Система заполнения кессона реактора водой

Управление запроектной аварией

- Подача воды в кессон реактора от системы перекачки ПВ
- Отводом протечек среды из 30 через фильтр системы вентиляции защитного ограждения
- Подпитка цистерн

Безопасность ЯЭУ во всех типах аварий обеспечивается в соответствии с требованиями действующей НД и современными тенденциями развития ядерной энергетики

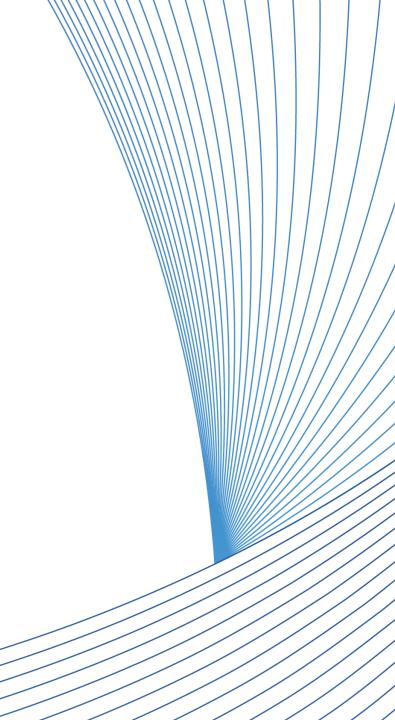
Аэрозольный

Вентилятор

фильтр

Заключение

- 1. Атомная энергетика доказала эффективность в судовой энергетике и внесла существенный вклад в развитие Северного Морского Пути и освоение Арктики
- 2. Референтность принятых в проектах РУ технических решений подтверждены многолетней успешной эксплуатацией судовых реакторных установок предыдущих поколений
- 3. Реализован плавучий энергоблок "Академик Ломоносов". Разработан ряд проектов ПЭБ нового поколения с реакторными установками типа РИТМ для различных площадок размещения
- 4. Наличие опыта проектирования, инфраструктуры изготовления и эксплуатации РУ типа РИТМ позволяет обеспечить сжатые сроки строительства энергоблоков
- 5. Преимущества судовых решений (компактность, маневренность, стойкость к внешним воздействиям, развитые свойства самозащищенности) позволяют АСММ с РУ типа РИТМ достичь высокой конкурентоспособности
- 6. Энергоблоки с РУ типа РИТМ позволяют обеспечить энергоснобжение труднодоступных регионов России и создать условия для их ускоренного социально-экономического развития


Благодарю за внимание

Фадеев Юрий Петрович

Главной конструктор РУ ВВР АО «ОКБМ Африкантов»

E-mail: <u>okbm@okbm.nnov.ru</u> www.okbm.nnov.ru

г. Обнинск, 28-31 мая, 2024 г.

