

Полномасштабное моделирование реактора БРЕСТ-ОД-300 на критическом стенде БФС-2

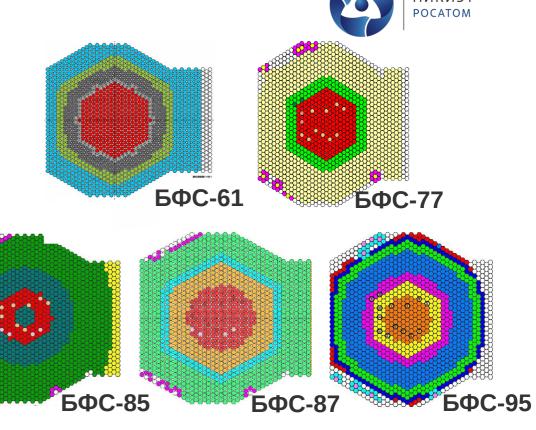
Нейтроника-2024

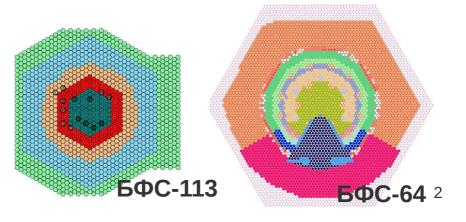
В.К. Давыдов, <u>А.П. Жирнов</u>, С.А. Ламанов, А.В. Моисеев, В.А. Юферева АО «НИКИЭТ» 28.05.2024

Моделирование РУ БРЕСТ-ОД-300 на стендах БФС

1990-1991 Сборки серии **БФС-61** (на стенде БФС-1). Свинец, уранплутониевое топливо, и графит для моделирования нитрида.

1999 Сборки серии **БФС-77** (на стенде БФС-1). Центральная тестовая зона моделирует спектральные условия ЦЗ БРЕСТ-ОД-300. Графит моделирует нитрид.


2000 Сборки серии **БФС-64** (на стенде БФС-2). Для компоновки активной зоны РУ БРЕСТ не хватило материалов. Поэтому в модели быстрого натриевого реактора с МОКС-топливом были сформированы:


тестовая зона со свинцом в форме сектора углом 60° и отражатель из Pb-Bi в форме сектора углом 120°.

2000 Сборки серии **БФС-85**, **БФС-87** (на стенде БФС-1) – «бенчмарк» сборки с отражателями из свинца и свинца-висмута для изучения альбедных свойств этих отражателей.

2002-2003 Сборки серии **БФС-95** (на стенде БФС-1) – модель быстрого реактора со свинцовым теплоносителем. В ЗМО – МОКСтопливо, в ЗБО – обогащенный уран, свинцовый отражатель.

2014 Сборки серии **БФС-113** (на стенде БФС-1) – бенчмарк модель активной зоны БРЕСТ-ОД-300 с нитридом.

Подготовка к экспериментам на сборках серии БФС-88 на БФС-2

В 2013 выпущено обоснование выбора топливной ячейки активной зоны.

В 2016 году разработана тестовая модель активной зоны с учетом реального количества нитрида.

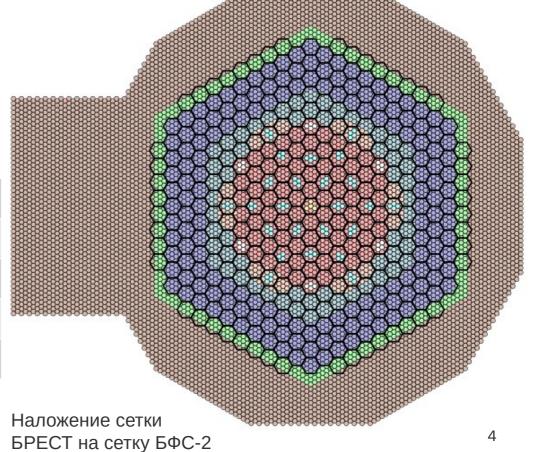
Проведено расчетное моделирование всех доступных сборок на стенде БФС-2, в том числе БФС-64, БФС-66, БФС-80 с целью уточнения и валидации прецизионной модели стенда БФС-2.

В 2018-2019 году проведены предтестовые расчеты сборок БФС-88-1 и БФС-88-2, обоснована информативность эксперимента, спланирована экспериментальная программа.

В 2021 году проведена модернизация проектов сборок серии БФС-88 с учетом реального количества свинца.

Планирование эксперимента

Изотоп (кг)	БФС-88-1	БФС-88-2	БРЕСТ-ОД-300
²³⁵ U	79,8	75,8	34,1
²³⁸ U	20265	19398	17015
²³⁸ Pu	-	-	32,1
²³⁹ Pu	2021	1952	1825
²⁴⁰ Pu	98	945	620
²⁴¹ Pu	0,8	0,8	74,8
²⁴² Pu	-	-	112,2
²⁴¹ Am	4,7	4,5	8,0


Одна ТВС реактора БРЕСТ-ОД-300 по площади составляет ~11 труб БФС. Рабочие органы СУЗ реактора БРЕСТ-ОД-300 моделируются с помощью 4 труб БФС.

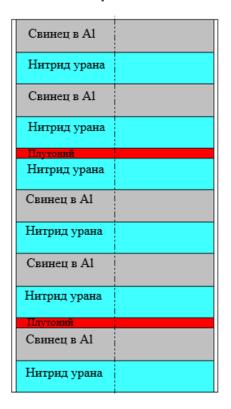
Размеры	БФС	БРЕСТ	Топливные ТС	1983
Диаметр ЦЗ, см	197,3	196,2	ПКР	28
Диаметр ПЗ, см	244,8	244,4	МГСУ3	96
Высота ЦЗ, см	110,12	110,92	Свинец	1466
Высота ПЗ, см	110,62	110,92	Сталь	648

5,20

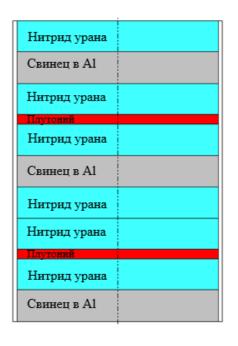
5,19

Объем зоны, м³

Топливные ячейки

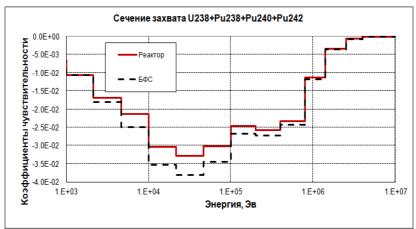


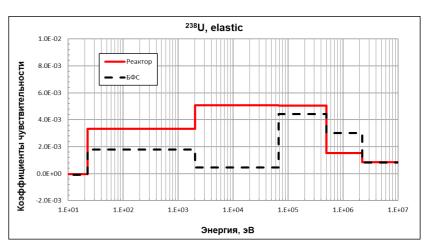
Ц3-1

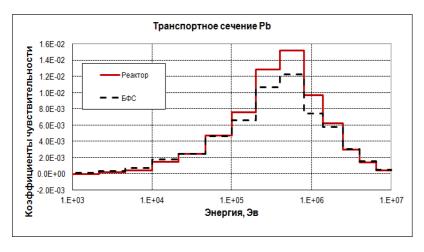

Ц3-2

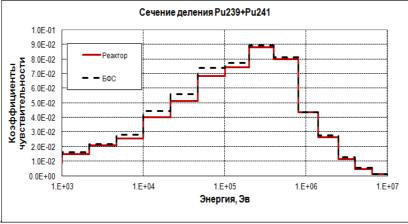
П3-1

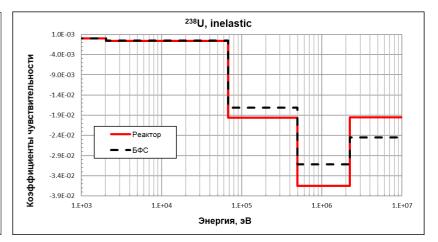
П3-2

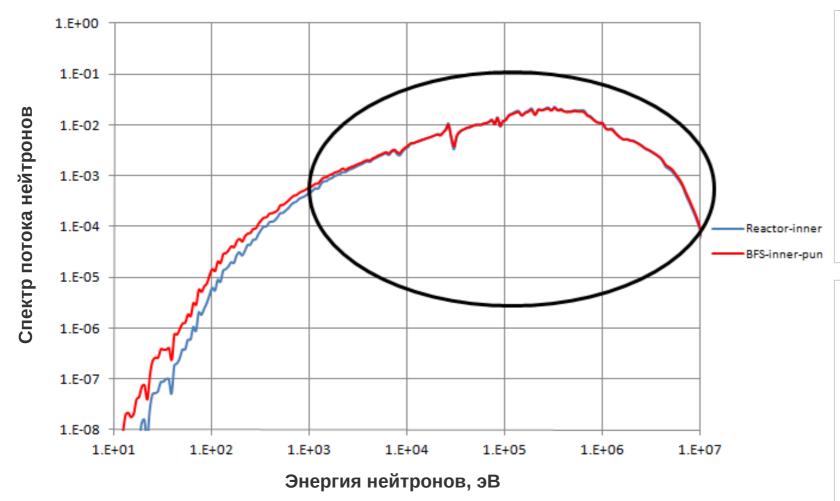

Нитрид урана	
Плутоний	
Свинец в А1	
Нитрид урана	

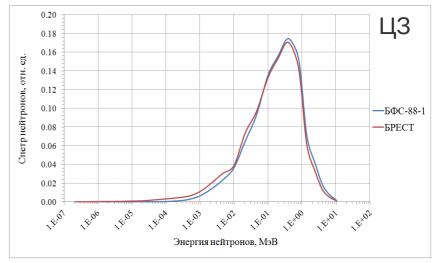

Уран обеднення	ій, двуокись
Плутоний	
Свинец в А1	
Уран обеднення	ій, двуокись

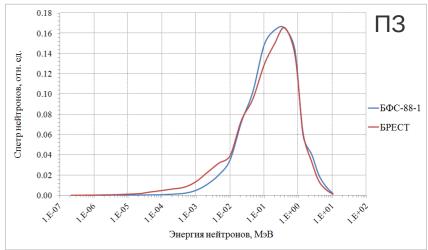

Обоснование информативности эксперимента





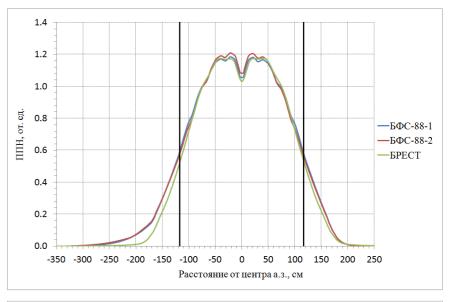


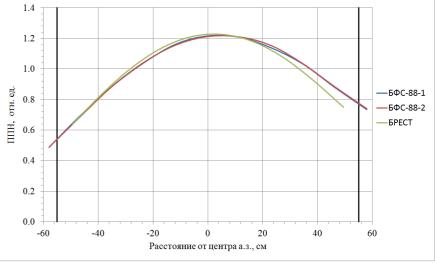




Сравнение нейтронных спектров БРЕСТ-ОД-300 и БФС-88

Сравнение нейтронных спектров в центральной зоне в диапазоне от 10 эВ, в выделенной области (выше 1 кэВ) находится 99,5 % всех нейтронов, которые и определяют НФХ


Предтестовое сравнение НФХ БФС-88 и БРЕСТ-ОД-300



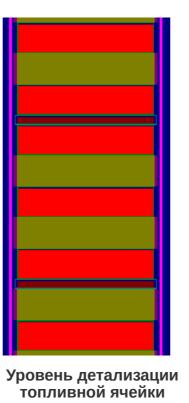
20110	Доля реакций деления, %		
Зона	БФС-88-1	БРЕСТ-300	
цз	68,56	68,25	
П3	31,44	31,75	

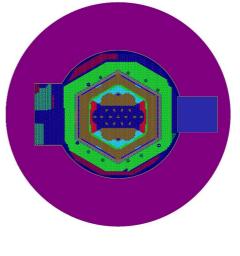
Спектральный	БФС-	88-1	БФС-88-2		БРЕСТ	
индекс	ЦЗ	ПЗ	ЦЗ	П3	ЦЗ	П3
f8/f5	0,02	0,02	0,02	0,02	0,02	0,02
f9/f5	0,98	0,99	0,97	0,98	0,99	1,00
c8/f5	0,15	0,14	0,15	0,15	0,14	0,14

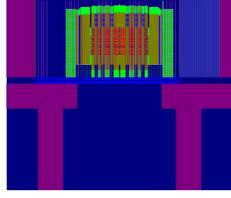
Этапы	БФС-88-2	БРЕСТ
Опустошение СПОС на уровне а.з.	-0,30	-0,32
Опустошение половины СПОС на уровне а.з.	-0,15	-0,16
Опустошение половины СПОС на уровне а.з. и BTO	-0,18	-0,23

Информативность определения критичности сборок по отношению к точности расчета К_{эф} РУ БРЕСТ-ОД-300

Бенчмарк	Экспериментальная погрешность, %	Параметр информативности
БФС-61	0,40	0,93
БФС-77	0,40	0,67
БФС-113	0,30	0,77
БФС-88	0,25	0,98

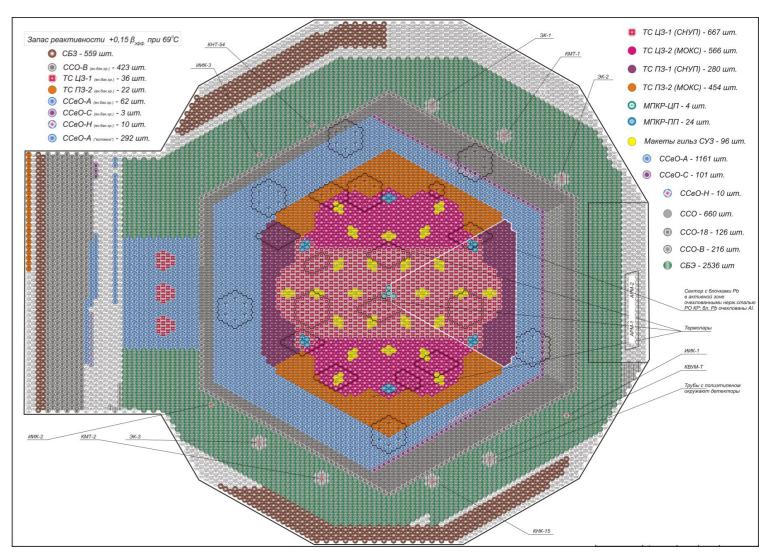

Составляющие экспериментальной погрешности К _{эф} , %					Полная
Сборка	состав материалов	температура	геометрия	повторяемость	погрешность К _{эф} ,%
БФС-88-2А	0,15	0,03	0,05	0,15	0,25
БФС-88-2Б	0,15	0,03	0,05	0,15	0,25
БФС-88-2В	0,15	0,03	0,05	0,15	0,25
БФС-88-2Г	0,15	0,03	0,05	0,15	0,25


Эксперименты могут быть признаны приемлемыми в качестве бенчмарк-экспериментов для расчётов критичности


Расчетное моделирование сборок серии БФС-88 по MCU-BR

- Расчет нейтронно-физических характеристик методом Монте-Карло с поточечным описанием ядерных данных.
- Константное обеспечение представляет собой банк данных MDBBR50 (включает в себя JENDL-4.0, ENDF/B-VII.1, РОСФОНД-2010)
- Расчетная модель детально учитывает геометрию сборки (активную зону, отражатели, тепловую колонну, металлическую колонну, бетонную защиту, плиту СУЗ, дистанционирующую решетку, стенки бака со слоем кадмия).
- Все блочки, наполняющие трубы, в моделях представлены индивидуально гетерогенно с учетом оболочек и зазоров между стенкой таблетки и оболочкой.

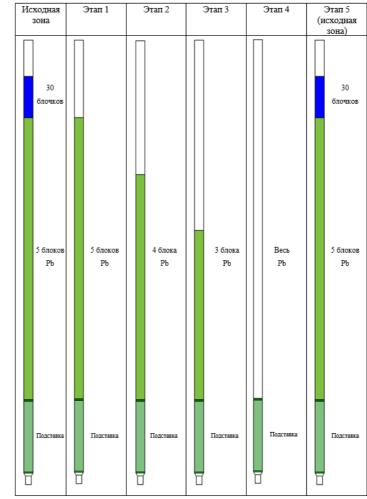
Модель в разрезе


Аттестационный паспорт ПК MCU-BR

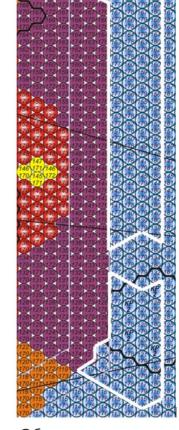
Сборки серии БФС-88-2

БФС-88-2A — Выход в критику **БФС-88-2Б** – Приведение границы активной зоны сборки в соответствие с требованиями к формируемой модели. Утяжеление макетов ПКР-П и МПКР-Ц сборки БФС-88-2А. Оценка эффективности СПОС и СПЭР. **БФС-88-2Г** – Добавление вставки, моделирующей ВРХ БРЕСТ-ОД-300. В случае БФС-88-2Г-П макеты ТВС в ВРХ отсутствуют, а в случае БФС-88-2Г в нем размещено три макета ТВС со СНУП-топливом.

05	K _{∍ф}		
Сборка	Эксперимент	MCU-BR	
БФС-88-2А	1,0005 ± 0,0025	0,99843 ± 0,00002	
БФС-88-2Б	1,0004 ± 0,0025	0,99824 ± 0,00002	
БФС-88-2Г	1,0006 ± 0,0025	0,99863 ± 0,00002	



БФС-88-2 Оценка эффективности СПОС и УПОС

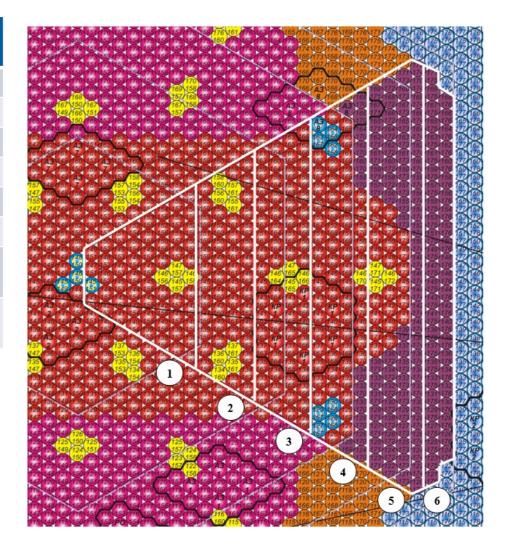

Операция	Число ССвО-А	Накопленный э	MCU-9,	
		Эксперимент	MCU-BR	цент
Этап 1:				
удаление	36	-0,2 ± 0,0	0.0 ± 0.9	0,2
30 блочков UO ₂	28	-0,6 ± 0,1	-0,3 ± 0,9	0,3
(сверху)	28	-1,1 ± 0,1	-0,1 ± 0,9	1,0
	28	-1,3 ± 0,1	-1,0 ± 0,9	0,3
Этап 2: удаление одного	36	-2,8 ± 0,2	-1,2 ± 0,9	1,6
блока свинца	28	-3,8 ± 0,2	-2,2 ± 0,9	1,6
(1-й ряд сверху)	28	-4,6 ± 0,2	-3,1 ± 0,9	1,5
	28	-5,3 ± 0,2	-4,2 ± 0,9	1,1
Этап 3: Удаление одного	36	-9,9 ± 0,3	-9,5 ± 0,9	0,4
блока свинца	28	-13,7 ± 0,3	-13,0 ± 0,9	0,7
(2-й ряд сверху)	28	-16,9 ± 0,4	-16,2 ± 0,9	0,7
	28	-19,1 ± 0,4	-18,0 ± 0,9	1,1
Этап 4: Удаление трех	18	-33,9 ± 0,8	-33,7 ± 0,9	0,2
блоков свинца (3-	28	-43,3 ± 1,1	-45,0 ± 0,9	-1,7
й – 5-й ряды сверху)	28	-50,5 ± 1,5	-53,1 ± 0,9	-2,6
. 27	28	-56,2 ± 1,6	-60,4 ± 0,9	-4,2
Этап 5: Возврат на место	15	-51,7 ± 1,6	-54,6 ± 0,9	-2,9
всех извлеченных	15	-47,2 ± 1,6	-49,7 ± 0,9	-2,5
на этапах 1 – 4 материалов	15	-40,2 ± 1,7	-43,3 ± 0,9	-3,1
	15	-32,6 ± 1,7	-33,8 ± 0,9	-1,2
	15	-22,8 ± 1,8	-23,1 ± 0,9	-0,3
	15	-14,0 ± 1,8	-13,3 ± 0,9	0,7
	15	-8,2 ± 1,9	-7,6 ± 0,9	0,6

Один УПОС моделировался 15-ю трубами свинцового отражателя. Погрешность расчета УПОС по ПК МСU-BR – 15 %. Погрешность расчета СПОС – 10 %.

Этапы опустошения ССвО-А при измерении эффективности СПОС

Область измерения эффективности СПОС

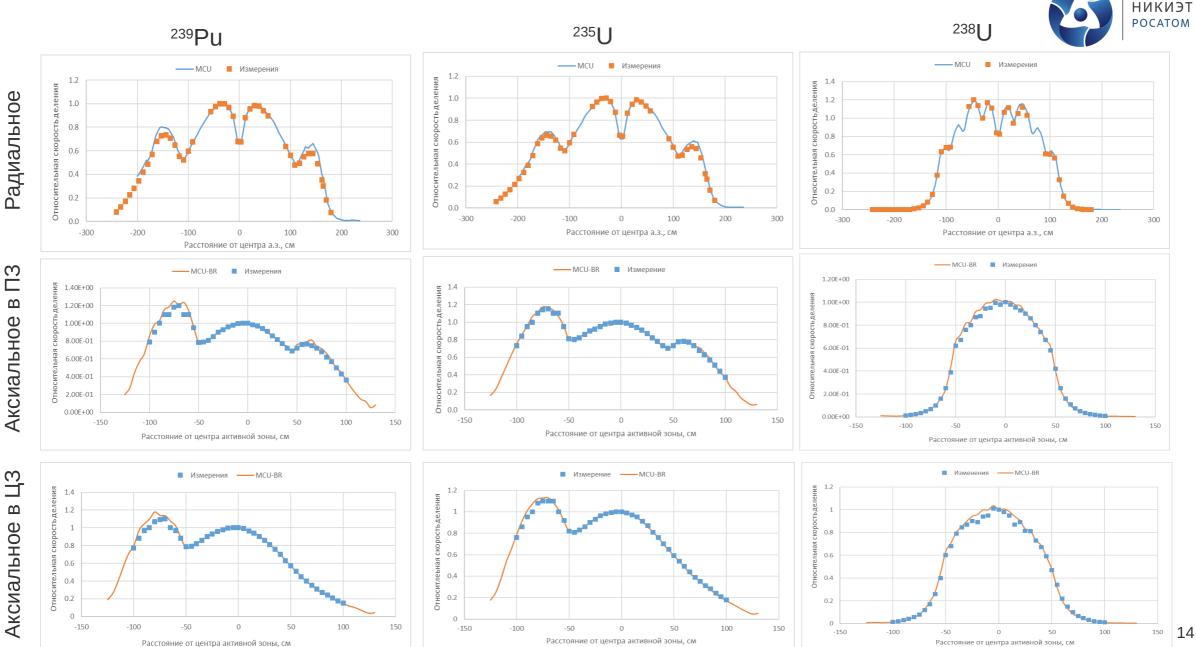
БФС-88-2 Оценка свинцового пустотного эффекта реактивности



Область измерения	Эксперимент, ¢	MCU-BR,¢	FACT-BR,¢
1	+21,7 ± 1,6	$+22,9 \pm 1,0$	+22,3
2	$+19,4 \pm 1,1$	$+22,5 \pm 1,0$	+11,7
3	$+11,1 \pm 0,5$	+10,1 ± 1,0	+9,7
4	$+10,2 \pm 0,5$	$+8,9 \pm 1,0$	+10,4
5	$+1.3 \pm 0.4$	$+2,9 \pm 1,0$	+2,2
6	$-6,2 \pm 0,9$	$-8,7 \pm 1,0$	-4,8
Суммарно для 6 областей	+57,5 ± 2,3	+58,6 ± 1,0	+51,5
Максимальный эффект	+63,7 ± 2,1	+67,3 ± 1,0	+56,3

Аттестованные погрешности:

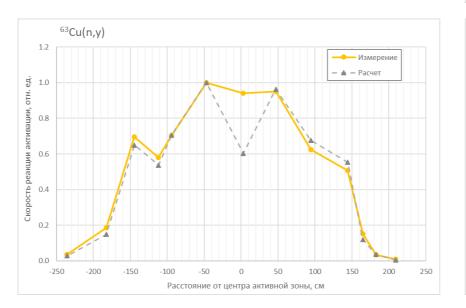
FACT-BR (CKO): 0,25 % δk/k

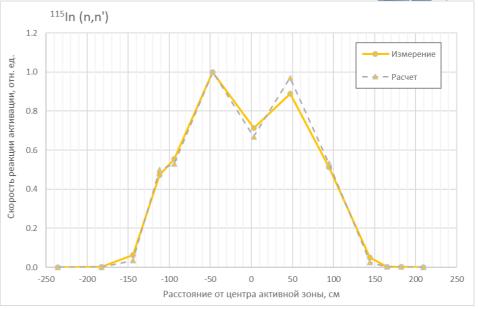

MCU-BR (макс. отклонение): 0,35 % δk/k

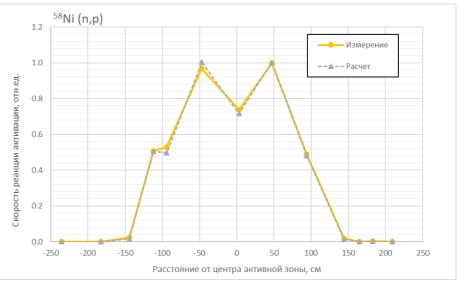
БФС-88-2 Пространственные распределения

 $\mathbf{\Omega}$

Ω



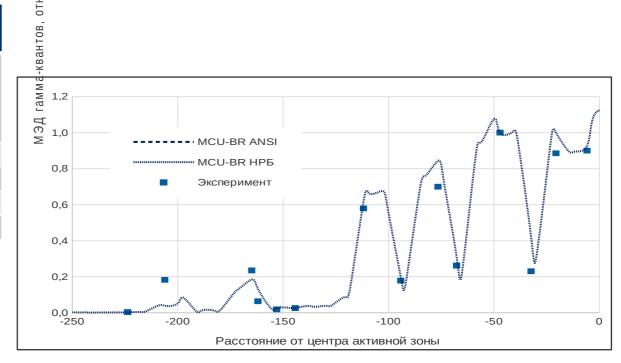

БФС-88-2 Скорости активации



На сборке БФС-88-2Г-П измерялись распределения активности детекторов ¹¹⁵In(n,n')_, ⁶³Cu(n,γ), ⁵⁸Ni(n,p) после их облучения в 13 точках вдоль центральной оси критической сборки. Детекторы размещались в межтрубном пространстве.

Максимальное относительное отклонение расчета от эксперимента для экспериментальных точек в топливной части активной зоны не превышает 10 %. Максимальное относительное отклонение для измерений в отражателе не превышает 79 %.

БФС-88-2 Радиальное распределение МЭД фотонов

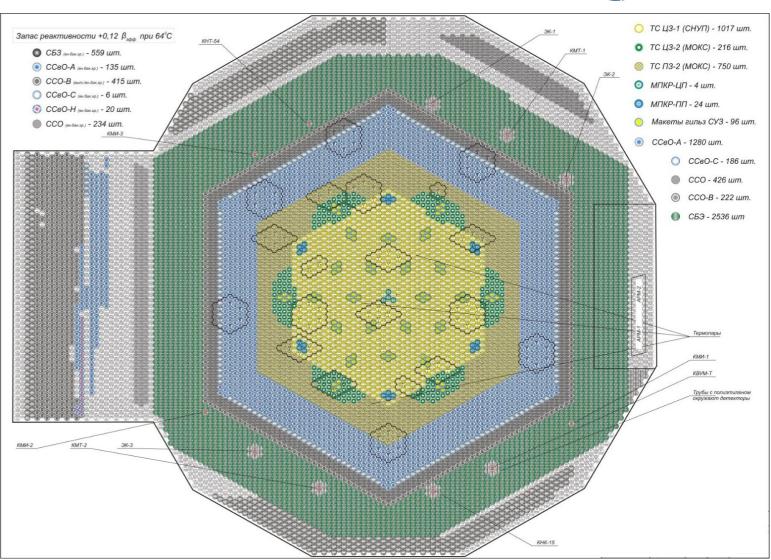


Для измерения дозы гамма-излучения на сборке БФС-88-2Г-П использовались термолюминесцентные детекторы типа ТЛД-500к, реализованные на основе Al_2O_3 . Размеры детектора: диаметр 5 мм, толщина 1 мм. При облучении детекторы располагались в ампулах из нержавеющей стали. Ампулы помещались в межтрубное пространство.

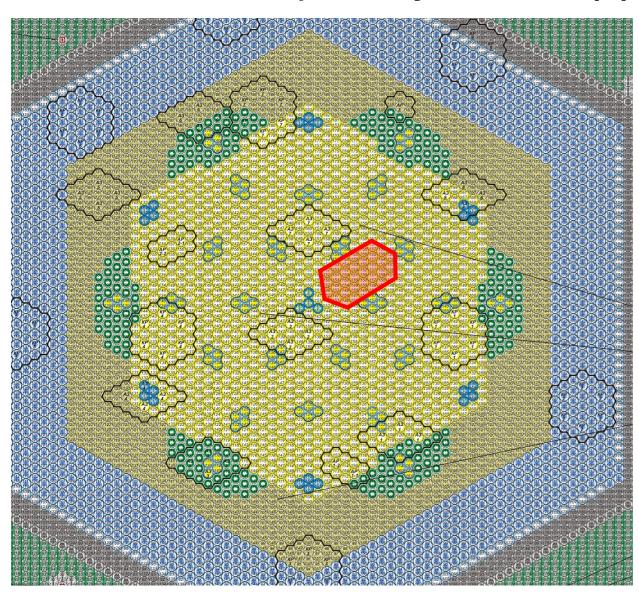
СКО результатов измерений и расчетов радиального распределения мощности дозы составляет 44,8 % для коэффициентов перевода в МЭД из системы ANSI и 47,6 % для коэффициентов из HPБ-99/2009 [17]. Максимальное относительное отклонение расчета от эксперимента не превышает 80 % для коэффициентов перевода в МЭД из системы ANSI и 100 % для коэффициентов из HPБ-99/2009.

Расстояние от	Ослабление МЭД фотонов				
края топливной части активной зоны, см	Эксперимент	Расчет			
0	100 %	100 %			
32	6 %	3 %			
71	2 %	1 %			
124	0,3 %	0,2 %			

Результаты использованы для аттестации MCU-BR



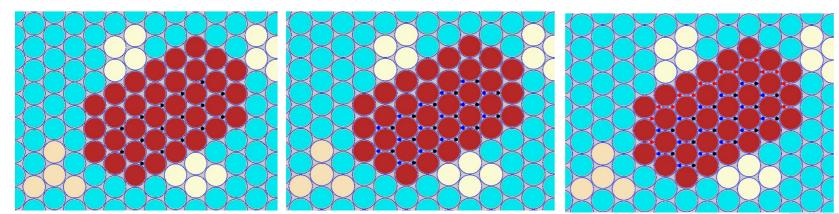
Сборка БФС-88-1


Отличительная особенность сборки – симметричное размещение СНУП- и МОКС-топлива в виде шестигранной активной зоны, где центральная часть сформирована стержнями со СНУП-топливом, а периферийная – стержнями с МОКС-топливом.

	Эксперимент	MCU-BR
К _{эф}	1,0005 ± 0,0025	1,00033 ± 0,00002
$\beta_{a\phi}$	0,0037 ± 0,0002	0,003527 ± 0,000004

БФС-88-1 Свинцовый пустотный эффект реактивности

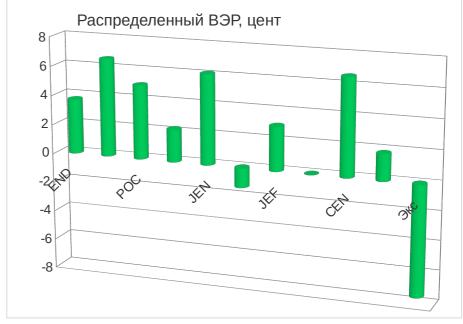
Свинец в сборке удалялся в 4 этапа, каждый раз во всей области исследования:


- этап 1, замена блочков свинца на пустые коробочки в пяти центральных топливных ячейках активной зоны,
- этап 2, замена блочков свинца на пустые коробочки в пяти остальных топливных ячейках активной зоны,
- этап 3, замена блочков свинца на пустые коробочки в верхней свинцовой полости,
- этап 4, замена блочков свинца на пустые коробочки в нижней свинцовой полости.

Операция/ этап	Эксперимент, ¢	MCU-BR,¢
Этап 1	$13,4 \pm 0,9$	$13,9 \pm 1,2$
Этап 2	$1,2 \pm 0,5$	$1,9 \pm 1,2$
Этап 3	$-14,3 \pm 0,8$	-15,2 ± 1,3
Этап 4	$-15,6 \pm 1,4$	$-17,2 \pm 1,3$
Накопленный эффект	-15,3 ± 1,9	-16,6 ± 1,3

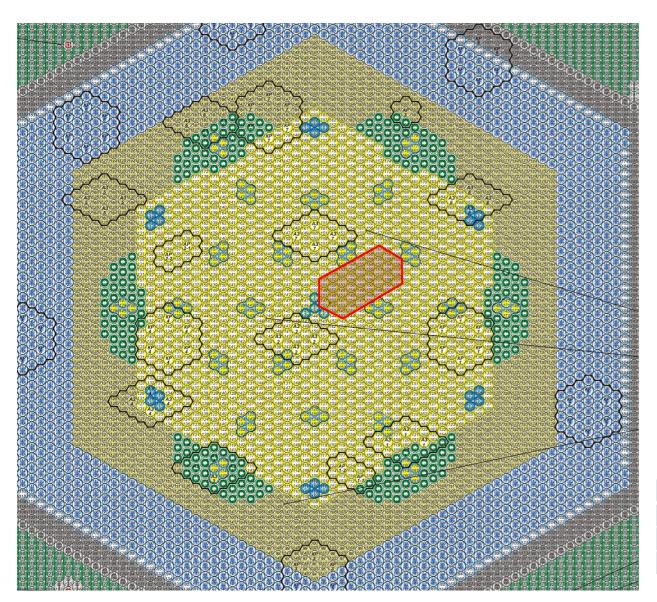
БФС-88-1 Водородный эффект реактивности

Размещение полиэтилена в межтрубных зазорах при извлеченном из труб свинце



Накопленный эффект реактивности

Операция/ этап	Эксперимент, ¢	Расчет, ¢	P - Э,¢
Этап 1 (16 вытеснителей)	-4,9 ± 1,8	$3,4 \pm 1,3$	8,3
Этап 2 (32 вытеснителей)	-5,1 ± 2,7	8,2 ± 1,3	13,3
Этап 3 (48 вытеснителей)	-6,4 ± 3,4	11,0 ± 1,3	17,4


Размещение 24 полиэтиленовых вытеснителей в одну трубу в ЦЗ

Операция	Эксперимент, ¢	Расчет, ¢	P - Э, ¢	
Замена ТС ЦЗ-1 на трубу с ПЭ	11,1 ± 0,5	10,4 ± 1,3	0.7	
вытеснителями	11,1 1 0,5	10,4 1 1,5	0,7	

БФС-88-1 Оценка влияния изменения изотопного состава плутония

На серии критических сборок БФС-88 в активной зоне использовалось два близких по изотопному составу типа блочков плутония (тип 201 и тип 229).

Тип <u>201</u> – блочок плутония низкофоновый (~95 %), произведен в 1967 году

Тип <u>229</u> – блочок плутония низкофоновый (~95 %), произведен в 2014 году

Тип <u>202</u> – блочок плутония высокофоновый (~85 %), произведен в 1967 году

Замена блочков Ри	Эксп., ¢	MCU-BR, ¢	FACT-BR, ¢
Тип 201 на тип 229	$+3,6 \pm 0,6$	$+3,9 \pm 1,1$	-
Тип 229 на тип 202	$-33,8 \pm 0,7$	$-36,5 \pm 1,2$	-
Тип 202 на тип 201	$+29,7 \pm 0,7$	$+32,6 \pm 1,1$	+24,3

БФС-88-1 Эффект реактивности при внесении бора в критическую сборку

Серия	Этап	Состав ячейки	Расположение блочков в ячейке	Эксперимент, ¢	MCU, ¢	MCU - Э, ¢	FACT, ¢	F - Э, ¢
	Исходное положение	3 блочка В₄С (ест.)						
Замена В. С (ест.) на В. С (80 %)	Этап 1	2 блочка В₄С (ест.) + 1 блочок В₄С (80 %)		-27,6 ± 2,9	-27,7 ± 1,2	-0,1	-24,3	3,3
замена Е на В _і С	Этап 2	1 блочок В₄С (ест.) + 2 блочка В₄С (80 %)		-19,5 ± 4,4	-20,2 ± 1,2	-0,7	-15,2	4,3
(1)	Этап 3	3 блочка В₄С (80 %)		-14,7 ± 5,4	-13,7 ± 1,2	1,0	-10,5	4,2
винец	Исходное положение	3 блочка В₄С (80 %)						
(80 %) на свинец	Этап 1	2 блочка В₄С (80 %) + 1 блочок свинца		22,0 ± 6,0	23,5 ± 1,2	1,5	17,1	-4,9
\circ	Этап 2	1 блочок В₄С (80 %) + 2 блочка свинца		32,6 ± 6,1	34,0 ± 1,2	1,4	28,4	-4,2
Замена В	Этап 3	3 блочка свинца		63,2 ± 3,3	64,1 ± 1,3	0,9	63,1	-0,1
	Исходное положение	3 блочка В₄С (ест.)		-56,5 ± 2,9	-59,9 ± 1,3	-3,4	-58,6	-2,1

БФС-88-1 Отношение средних сечений деления минорных актинидов к среднему сечению деления ²³⁹Pu

MA		14	45/175 (ЦЗ-2)		142/180 (ПЗ)			2 (свин ражате		
	Эн	КСП.	MCU	Откл, %	Эксп.	MCU	Откл, %	Эксп.	MCU	Откл, %
²³⁷ N	p 0,2	176	0,177	-0,4	0,053	0,047	14	0,191	0,199	-4
²⁴⁰ P	u 0,:	189	0,194	-3	0,069	0,061	13	0,206	0,213	-3
²⁴¹ A	m 0,:	140	0,135	4	0,047	0,038	24	0,148	0,149	-0,8
²⁴³ A	m 0,:	109	0,100	10	0,033	0,024	36	0,117	0,108	8
²⁴⁴ C	m 0,3	383	0,235	63	0,091	0,077	18	0,202	0,257	-21
²⁴⁵ C	m 1,4	461	1,510	-3	1,599	1,659	-4	1,406	1,456	-3

Облучение АКД производилось на мощности 300 Вт.

Погрешность результатов определяется погрешностью знания количества делящегося вещества в активном слое камеры и статистической погрешностью измерений.

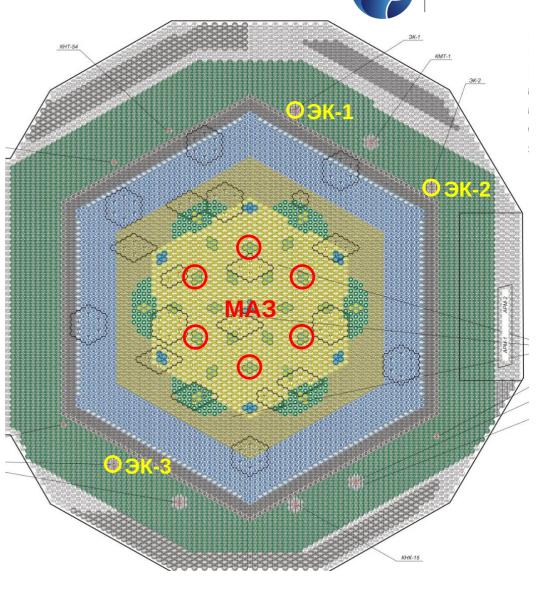
Количество ядер основного делящегося изотопа (для ²³⁷Np, ²⁴⁰Pu, ^{241,243}Am) в камерах известно с погрешностью ~0,7 % (1σ)

Полная относительная погрешность измерения для ²⁴⁴Сm в активной зоне составила 6,5%, а в свинцовом отражателе – 24%.

22

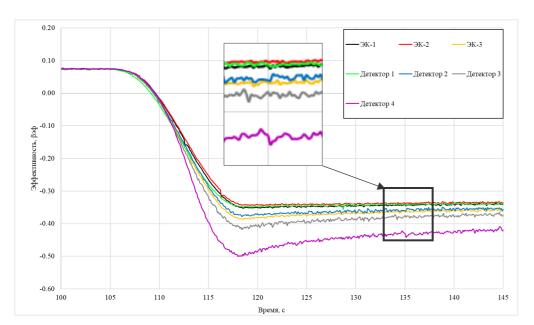
БФС-88-1 Результаты измерений эффективности макетов СУЗ

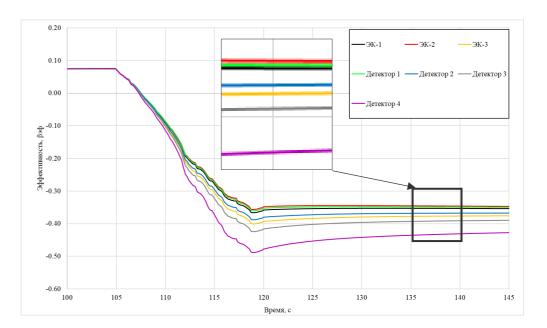
	Метод измерения/расчета						
Измеряемые стержни	Обратное умножение, β₃ф	«Разгон- сброс» , β _{эф}	FACT-BR без поправки, β _{эф}	FACT-BR с поправкой, β _{эф}	MCU-BR, β _{эф}		
MA3-1	-0.88 ± 0.03	-0.84 ± 0.03	-1,01	-0,95	-0.94 ± 0.01		
6 MA3	$-4,95 \pm 0,24$	$-5,04 \pm 0,34$	-6,58	-6,11	-6,11 ± 0,01		
MKP-1	$-1,04 \pm 0,04$	$-1,00 \pm 0,04$	-1,19	-1,12	$-1,08 \pm 0,01$		
Шесть МКР (внутренние)	-4,65 ± 0,15	-	-6,57	-6,16	-5,92 ± 0,01		
MKP-6	-0.48 ± 0.02	-0.43 ± 0.02	-0,48	-0,45	-0.48 ± 0.01		
Шесть МКР (внешние)	-3,00 ± 0,10	-	-3,22	-2,99	-3,21 ± 0,01		
MKP-1 + MKP-	-1,96 ± 0,03	-	-2,44	-2,28	-2,21 ± 0,01		
12 MKP + 4 MAP	-8,62 ± 0,34	-	-12,53	-11,67	-11,73 ± 0,01		
12 MKP + 4 MAP + 6 MA3	-11,19 ± 0,50	-	-18,21	-17,02	-16,90 ± 0,01		


- Экспериментальные значения по двум методам совпадают в пределах погрешностей
- Для учета эффекта гомогенизации поглотителей введена поправка на макросечения поглощения, отклонение FACT-BR от MCU-BR не более 4 %.
- Отклонения расчетных значений от эксперимента от 7 до 50 %, связанные с пространственными эффектами

Анализ пространственных эффектов при измерении эффективности 6 макетов аварийной защиты (МАЗ)

	Метод расчета	Эффективность, β _{эф}
Эксг	перимент («разгон-сброс»)	$-5,04 \pm 0,34$
Р	асчет на К _{эф} по MCU-BR	-6,11 ± 0,01
	Расчет на К _{эф}	-6,11
8	Расчет по детектору ЭК-1	-5,60
FACT-BR	Расчет по детектору ЭК-2	-5,63
FA	Расчет по детектору ЭК-3	-5,60
	Расчет ОРУК	-6,35


Выводы


- Отклонение расчета по детектору от прямого расчета порядка 10 %
- Пространственные эффекты объясняются изменением соотношения между средним нейтронным потоком в активной зоне и в месте расположения детектора при перемещении стержней

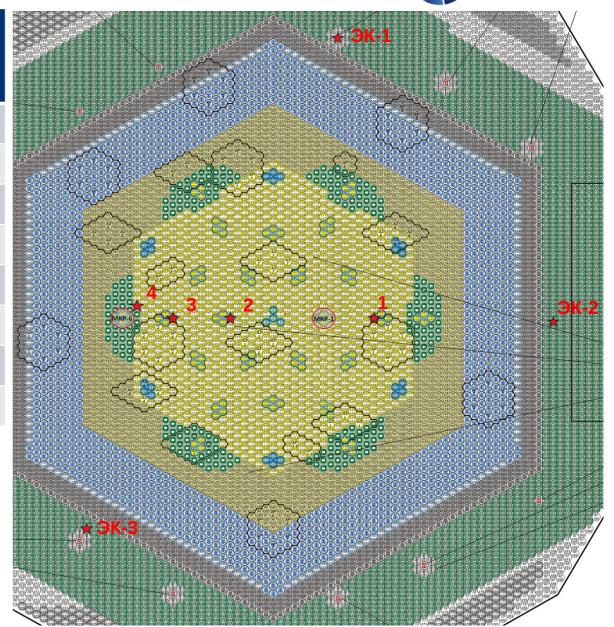
Изучение пространственных эффектов при измерении одиночных макетов СУЗ

Экспериментальные кривые реактивности при вводе макета СУЗ

Расчетные кривые реактивности при вводе макета СУЗ

Выводы:

- Измерены одиночные макеты СУЗ с расположением дополнительных детекторов в активной зоне
- Соотношение между показаниями детекторов, полученное в расчете, совпадает с экспериментом


Изучение пространственных эффектов при измерении одиночных СУЗ

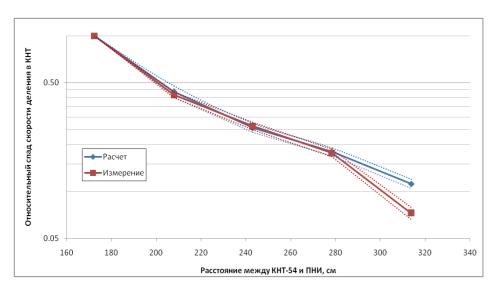
A	НИКИЭТ РОСАТОМ

Измерение	Эффективность МКР-6, ¢ (FACT-BR /Эксперимент)	Простр. эффект, %	Отклонение (Р-Э)/Э, %
ЭК-1	42,7 / 42,9	-2,5	0,5
ЭК-2	42,0 / 42,2	-4,1	0,5
ЭК-3	45,4 / 45,1	3,7	0,7
Детектор 1	42,3 / 42,7	-3,4	0,9
Детектор 2	44,4 / 44,5	1,4	0,2
Детектор 3	47,1 / 46,9	7,5	0,4
Детектор 4	51,7 / 52,5	18,0	1,5
ОРУК	43,8	-	-

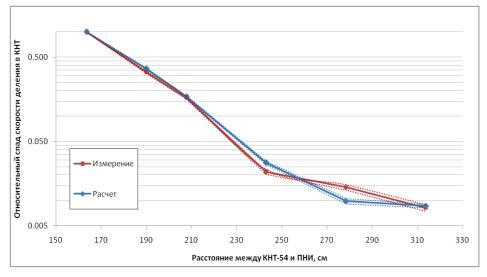
Выводы:

- Пространственные эффекты составляют до 18 % для единичного СУЗ
- По мере удаления места регистрации от места сброса стержня эффективность снижается

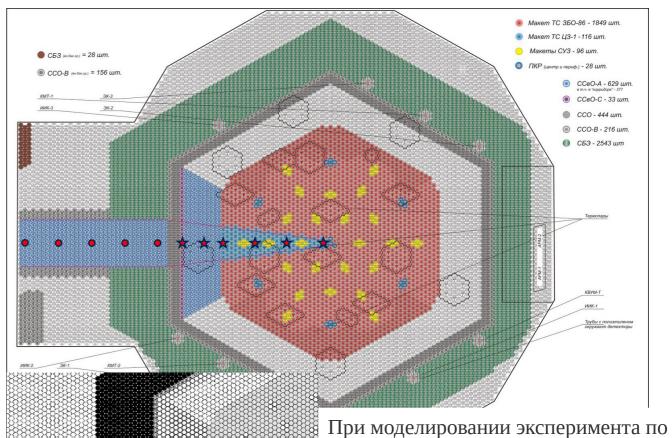
Изучение пространственных эффектов при измерении групп СУЗ


Детектор	MA3	6 МКР (внутренние)	12 MKP + 4 MAP	12 MKP + 4 MAP + 6 MA3
Эксперимент, β_{ad}	-4,95	-4,76	-9,71	-11,19
Среднее по детекторам, β _{эф}	-5,61	-5,47	-11,06	-13,03
Расчет ОРУК, _{вы}	-6,35	-6,40	-12,17	-17,88
Эксперимент с учетом простр. эффекта, β_{ad}	-5,53	-5,45	-10,60	-14,23
Пространственный эффект, %	11,7	14,5	9,1	27,1
Отклонение от эксперимента, %	13,3	14,9	13,9	16,4

Выводы:


- СКО эффективности СУЗ по аттестационному паспорту FACT-BR и MCU-BR составляет 8 %
- Максимальное отклонение составляет 16,4 %
- Наблюдается систематическое отклонение расчетного значения от экспериментального порядка 15 %, связанное с влиянием источников нейтронов в местах расположения детекторов

Оценка чувствительности системы контроля к источнику



При перемещении детектора

При перемещении источника

При моделировании эксперимента по оценке ослабления ППН в свинце кроме точечного источника ²⁵²Сf также учитывалось спонтанное деление ²³⁸U в блочках обедненного диоксида урана.

Источник ²⁵²Сf 7,5 нейтронов/с

Обоснование погрешностей ПК MCU-BR

Nº	Характеристика, размерность	Погрешность в паспорте	СКО	Максимальное
1	Коэффициент размножения нейтронов стартовой загрузки реактора (К _{эф})	0,00351	0,0031	0,0033
2	Эффективность систем АЗ и ЭСМ, $\beta_{\text{эф}}$	7 %1		51 %
3	Эффективность АЗ без одного наиболее эффективного органа, $\beta_{9\phi}$	7 %1		
4	Эффективность групп и одиночных стержней СУЗ, $\beta_{\text{эф}}$	8 %1	9 %	13 %
5	Пустотный эффект реактивности, % Δk/k	0,352	0,007	0,013
6	Эффективная доля запаздывающих нейтронов	0,00032		0,00028
7	Пространственное распределение плотности потока нейтронов, отн. ед.	4 %2	1,9	4,0
8	Пространственное распределение энерговыделения, отн. ед.	4 %1	1,9	4,0
	чения среднеквадратического отклонения симальное значение погрешности расчета, получен			

Основные результаты

- Модели нейтронно-физических экспериментов, выполненных на сборках БФС-88-2 и БФС-88-1, рекомендуются в качестве бенчмарков для верификации ядерных данных и расчётных программ переноса нейтронов, реализующих метод Монте-Карло.
- Получены данные для оценки погрешностей эффективности СПОС и УПОС БРЕСТ-ОД-300 для дополнения аттестационного паспорта MCU-BR.
- Получены данные для ослабления потока нейтронов и МЭД фотонов в свинцовом и стальном отражателях для аттестации MCU-BR для расчета радиационных характеристик.
- Достигнута наибольшая информативность (0,97) и наименьшая экспериментальная погрешность (0,25 %) при определении параметра критичности при моделировании РУ БРЕСТ-ОД-300 на БФС.
- Выявлен значительный пространственный эффект при измерении на БФС-2 эффективности групп макетов СУЗ датчиками, расположенными далеко за пределами активной зоны.
- Выявлено расхождение при измерении и расчете распределенного водородного эффекта реактивности.
- Выполнена оценка константной погрешности расчетов основных нейтронно-физических характеристик активной зоны РУ БРЕСТ-ОД-300 со свинцовым теплоносителем с учетом результатов выполненных полномасштабных экспериментов на сборках БФС-88.
- Выявлена необходимость развития расчетных методик для адекватного моделирования измерений методом МОУ и решения задачи с учетом источника в системах, близких к критике.

30

БФС-90

На 2024 год запланированы эксперименты на БФС-90, моделирующем БН-1200, в том числе с нитридным топливом.

Необходимо использовать сборку для более глубокого изучения пространственного эффекта при измерении эффективности групп СУЗ.

Измерение датчиками, расположенными в активной зоне и в ВТО.

Повторное моделирование распределенного водородного эффекта.

Моделирование БР-1200

- Необходимость оценки интерференции СУЗ и моделирование физического пуска.
- Нехватка свинца, нитрида и плутония для полномасштабного моделирования.
- Описанный радиус БР-1200 ~260 см (с BPX ~315 см), радиус БФС-2 ~250 см.
- Отказ от использования ²³⁸U в отражателе, в местах расположения датчиков.
- Размещение дополнительных датчиков в активной зоне, в том числе в ВТО.
- Исследование возможности физического пуска не из центра активной зоны.

В.К. Давыдов, <u>А.П. Жирнов</u>, С.А. Ламанов, А.В. Моисеев, В.А. Юферева АО «НИКИЭТ» 28.05.2024