CROSSER – программный модуль подготовки групповых констант для инженерных расчетов быстрых реакторов

Кощеев В.Н., Тормышев И.В., Мишин В.А., Перегудов А.А., Раскач К.Ф., Семенов М.Ю., Якунин А.А.

Нейтроника 2019

Мотивация

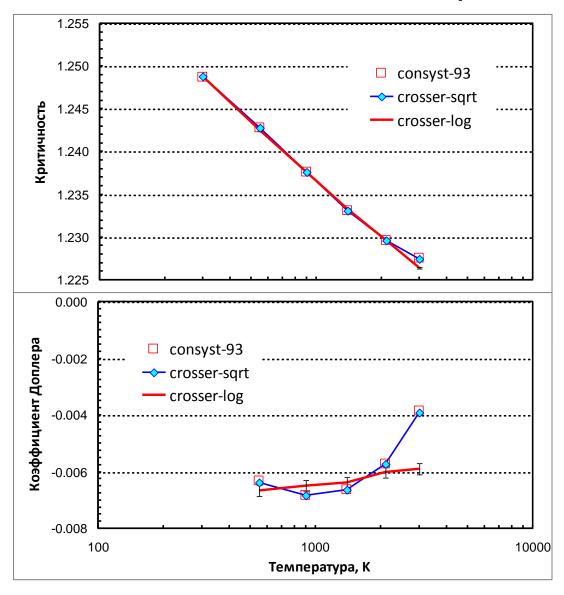
- Необходимость быстродействующей подготовки макроконстант для большого числа физических зон (30 - 50 тыс.).
- Необходимость быстродействующей подготовки макроконстант для <u>нестационарных расчетов</u>.
- Потребность в представлении данных с большим числом значащих чисел, чем они имеются в стандартной библиотеке БНАБ-93.
- Потребность в более современных ядерных данных, чем они имеются в стандартной библиотеке БНАБ-93 (например, РОСФОНД-2010).
- Необходимость создания единого модуля подготовки констант унифицированного с точки зрения входных форматов ядерных данных (БНАБ-93, БНАБ-РФ).

Цель работы -

создание быстродействующего, универсального и максимально кросс-платформенного модуля подготовки макроконстант для инженерных НФХ расчетов быстрых реакторов

Основа для работы:

- программа CONSYST0601;
- библиотека микроконстант БНАБ-93, БНАБ-РФ;
- число энергетических групп -28/299.

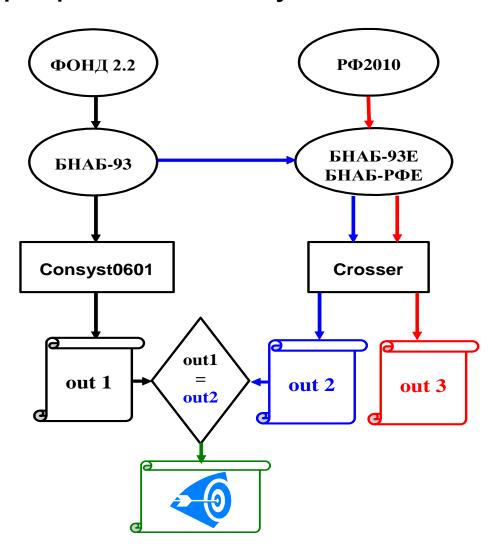

Примечание

Входные и выходные форматы данных сохранены такими же, как в CONSYST0601.

Работа над модулем

- Исключено многократное чтение с диска в оперативную память одних и тех же данных (оптимизация работы с памятью, чтением и т.п.);
- Корректировка закона интерполяции SSF(T) (для корректного учета эффекта самоэкранировки сечений при произвольной температуре внесено изменение в закон интерполяции: корневая зависимость изменена на логарифмическую);
- Модификация программы TRIGEX (TRIGEX собран с новым модулем CROSSER);

Результат изменения закона интерполяции


Работа над библиотекой микроданных

- Использован формат БНАБ93E (отличие от формата БНАБ93 повышенная точность представления чисел E12.5);
- Для SSF данных использован вещественных тип вместо целочисленного (повышается точность представления данных, убираются лишние преобразования);
- Формирование библиотеки БНАБ93Е (данные библиотеки БНАБ-93 переведены в формат БНАБ93Е);
- Формирование библиотеки РФ10E (данные библиотеки РОСФОНД-2010 переработаны в формат данных БНАБ-93E).

Типы данных в библиотеке РФ10Е

- MF=1, 301 основные параметры взаимодействия;
- MF=2, 302 параметры неупругого взаимодействия;
- MF=3, 303 параметры упругого взаимодействия;
- MF=4, 304 данные о самоэкранировке сечений (SSF) при T=300K;
- MF=5, 305 зависимость данных SSF от температуры среды;
- MF=318 матричные спектры нейтронов деления.

Схема подготовки библиотеки констант для верификации модуля CROSSER

Верификация модуля CROSSER

функционалы: k_{eff} , $DC=(1/k_{eff}(T1)-1/k_{eff}(T2))/ln(T2/T1)$

• А) модель бесконечной среды

Геометрия – бесконечная среда;

Состав – МОХ топливо из а.з. реактора БН-1200;

Программа расчета – MCNP5;

Ядерные данные:

МС-данные БНАБ93 (CONSYST0601), МС-данные БНАБ93E (CROSSER), МС-данные БНАБ-РФ (CONSYST-RF), МС-данные РФ10E (CROSSER-RF),

СЕ-данные на основе РОСФОНД2010;

Набор температур: 300К, 550К, 900К, 1400К, 2100К, 3000К

Верификация модуля CROSSER

• Б) модель конечного цилиндра

Геометрия — цилиндр H = 200 см, R = 90 см;

Состав – МОХ топливо из а.з. реактора БН-1200;

Программа расчета – MCNP5;

Ядерные данные:

СЕ-данные на основе РОСФОНД2010,

MG-данные БНАБ93 (CONSYST0601), MG-данные БНАБ-РФ (CONSYST-RF), MG-данные БНАБ93E (CROSSER), MG-данные РФ10E (CROSSER-RF);

Набор температур: 293K, 300K, 310K, 540K, 550K, 560K, 890K, 900K, 910K, 1350K, 1400K, 1450K, 2050K, 2100K, 2150K, 3000K

Верификация модуля CROSSER

• В) модели быстрого реактора

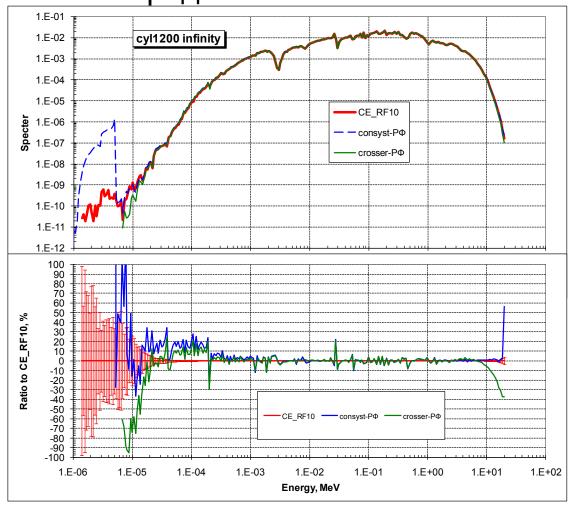
Реактор	Топливо	Отражатель	Наличие FP
БН-600	UO2 + MOX	Steel	+
БН-800	UO2 + MOX	UO2	-
БН-1200	MOX	UO2	+
БРЕСТ	Нитрид	PB	-

Программы расчета:

MMKC

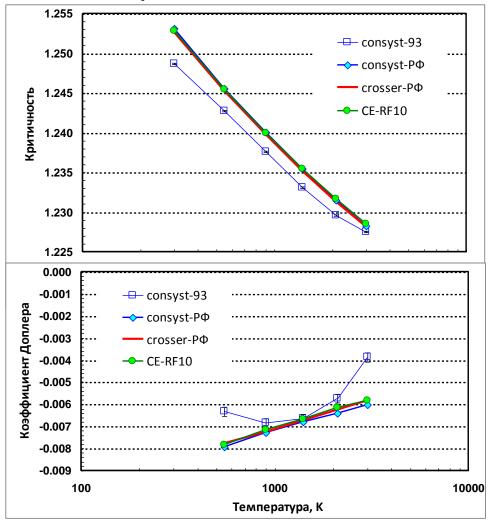
СЕ-данные на основе РФ2010;

MMKK:

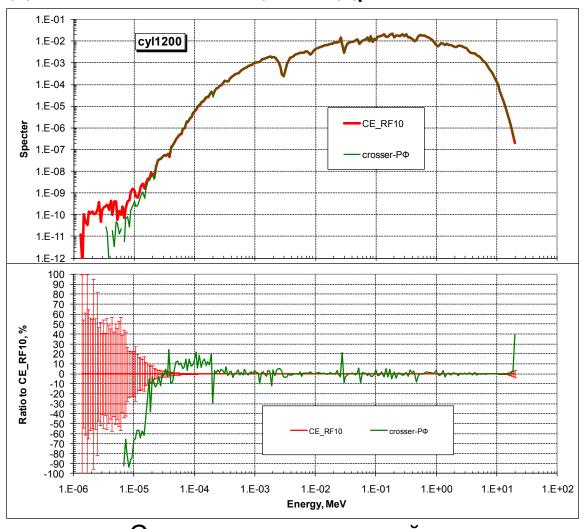

МG-данные БНАБ93 (CONSYST0601); МG-данные БНАБ-РФ (CONSYST-RF);

MG-данные БНАБ93E (CROSSER);

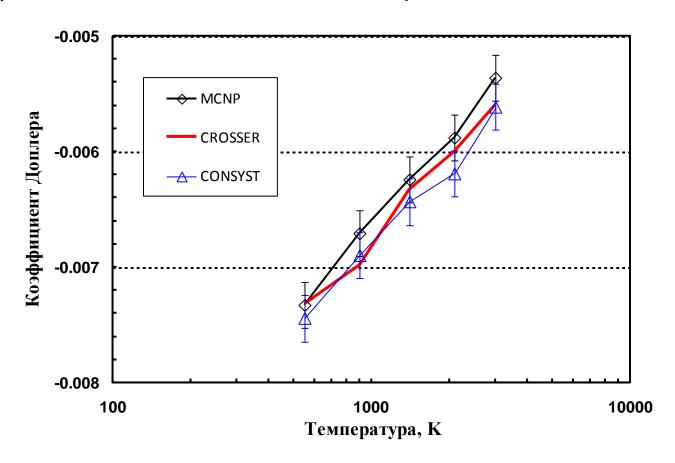
MG-данные РФ10E (CROSSER-RF);


Набор температур: рабочее состояние (а.з. – 1400К, окружение – 900К); холодное состояние (всё - 300K).

• А) бесконечная среда Т=300К


Сравнение спектра нейтронов

• А) бесконечная среда


Сравнение критичности и коэффициента Доплера

• Б) модель конечного цилиндра Т=300К

Сравнение спектра нейтронов

• Б) модель конечного цилиндра

Расчет коэффициента Доплера по разным программам для узловых температур

• В) модели быстрых реакторов – критичность Т=300К

модель	БНАБ-93		РОСФОНД2010		
	crosser	consyst0601, %	CE	-crosser, %	-consyst RF, %
БН-600	1.0272(1)	+0.01	1.0258(1)	-0.18	-0.20
БН-800	1.0134(1)	+0.02	1.0144(1)	+0.04	+0.03
БН-1200	1.0165(1)	0.00	1.0172(1)	-0.01	+0.03
БРЕСТ	1.0136(1)	-0.01	1.0060(1)	+0.08	+0.02

• В) модели быстрых реакторов – критичность Рабочие температуры

модель	БНАБ-93		РОСФОНД2010		
	crosser	-consyst, %	CE	-crosser, %	-consyst, %
БН-600	1.0160(1)	0.00	1.0131(1)	-0.13	-0.15
БН-800	1.0020(1)	+0.02	1.0038(1)	+0.17	+0.16
БН-1200	1.0040(1)	+0.02	1.0049(1)	+0.17	+0.20
БРЕСТ	1.0022(1)	+0.02	0.9929(1)	+0.18	+0.12

• Быстродействие

Модуль	Число зон	Число групп	Время, сек
CROSSER			22
CONS0601	3 000	26	100
CONSYST-RF]		245
CROSSER		299	150
CONS0601	3 000		260
CONSYST-RF			-
CROSSER		26	200
CONS0601	30 000		880
CONSYST-RF]		6060

• Быстродействие

Модуль	Число зон	Число групп	Время, сек	
CROSSER	6 000	26	4	COREMELT
CONS0601	0 000		24	
CROSSER	10 000	26	37	BNcode
CONS0601		20	252	

COREMELT

Временной шаг: 0.001 - 0.01 с

Число шагов в типичном расчёте – 10^6

Экономия времени на расчёт: (10^6 * (24-4))/ 3600*24

= <u>23 дня</u>

Выводы

- Разработан универсальный (для БНАБ93, БНАБ93Е, РФ10Е) и быстродействующий модуль подготовки макроконстант CROSSER;
- Сформированы библиотеки микроконстант в формате БНАБ93E (БНАБ93E, РФ10E);
- Проведены верификационные расчеты на моделях бесконечной среды, цилиндра конечного размера и моделях быстрых реакторов. Рассчитывались критичность и коэффициент Доплера;
- На основе анализа полученных результатов следует, что
 - a) CROSSER(БНАБ93E) ~ CONSYST(БНАБ93) ~ 0.02%;
 - б) CROSSER(РФ10E) ~ CONSYST-RF(БНАБ-РФ)~ 0.03%;
 - в) CROSSER(РФ10E) ~ MCNP5(CE-РФ10) ~ 0.20%

Благодарю за внимание