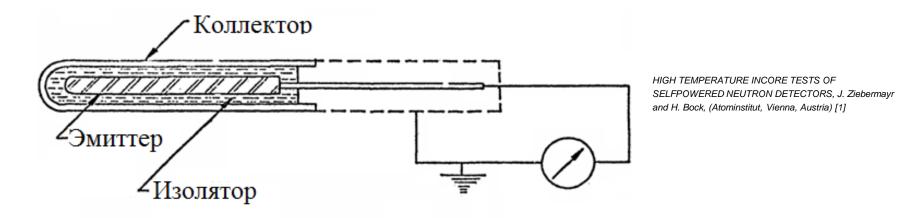


РАСЧЁТ ПО ПРОГРАММАМ MCU-PD И ТВС-М ПОКАЗАНИЙ ДЕТЕКТОРОВ ПРЯМОЙ ЗАРЯДКИ

Бикеев А.С., Курченков А.Ю., Шкаровский Д.А., Шкитырь В.В.

Всероссийская научно-техническая конференция «Нейтронно-физические проблемы атомной энергетики» Госкорпорация «Росатом», АО «ГНЦ РФ-ФЭИ» 27 — 29 ноября 2019 года Обнинск, Россия


Введение

Для успешного лицензирования и безопасного прохождения опытно-промышленной эксплуатации нового вида топлива в активной зоне действующего ВВЭР, необходимо предварительно провести верификацию инженерных программ, штатно использующихся для проектирования топливных циклов, анализа безопасности работы активной зоны и расчётного сопровождения эксплуатации энергоблока.

В матрицу верификации инженерных программ входят задачи расчёта переходных функций датчиков прямого заряда (ДПЗ).

Датчики прямого заряда

ДПЗ предназначены для определения плотности потока нейтронов. Принцип работы основан на ядерных реакциях, сопровождаемых вылетом заряженных частиц.

$$^{103}Rh + n \rightarrow ^{104}Rh \rightarrow ^{104}Pd + \bar{e} + \bar{\nu_e}$$

Переходная функция ДПЗ определяет соотношение между током ДПЗ и мощностью ТВС

$$F \sim \frac{P}{I}$$

Цель работы

Цель работы — сравнительный анализ переходных функций датчиков прямого заряда (ДПЗ) системы внутриреакторного контроля (СВРК) для ТВС ВВЭР с новым видом топлива, рассчитанных по спектральной программе ТВС-М и реализующей метод Монте-Карло программе МСU-PD.

Актуальность работы

СВРК является основой безопасной и экономичной работы ВВЭР. В СВРК энерговыделение в активной зоне определяется по показаниям ДПЗ. Функции перехода от тока ДПЗ к энерговыделению ТВС рассчитываются по спектральной программе ТВС-М.

Для каждого типа ТВС и партии ДПЗ заранее рассчитываются переходные функции. Переходные функции ДПЗ никогда не корректируются в процессе эксплуатации, поэтому к точности их определения предъявляются очень высокие требования.

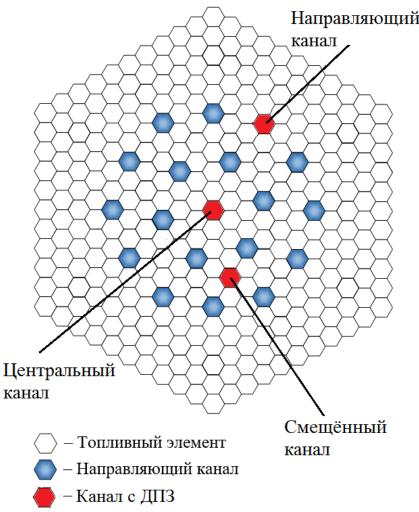
До настоящего времени не было сравнений расчётов переходных функций ДПЗ в ТВС-М с реперными программами с учётом выгорания топлива в ТВС.

Постановка задачи

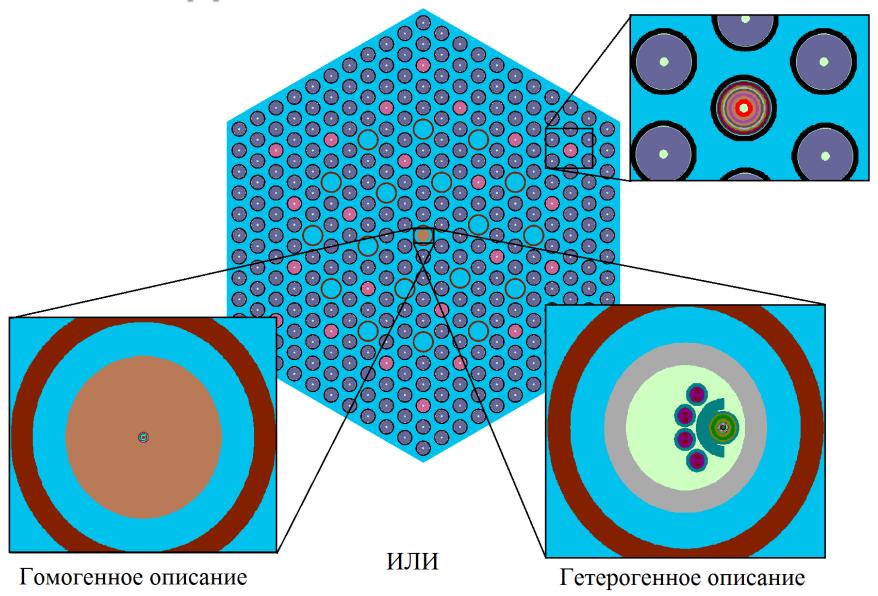
Необходимо рассчитать переходные функции детекторов прямой зарядки в ТВС ВВЭР с новым видом топлива (уран-плутониевым) с различными параметрами топлива и теплоносителя в различных точках выгорания по программам ТВС-М и МСU-PD, а также провести сравнительный анализ полученных результатов.

Программа ТВС-М (версия 1.4)

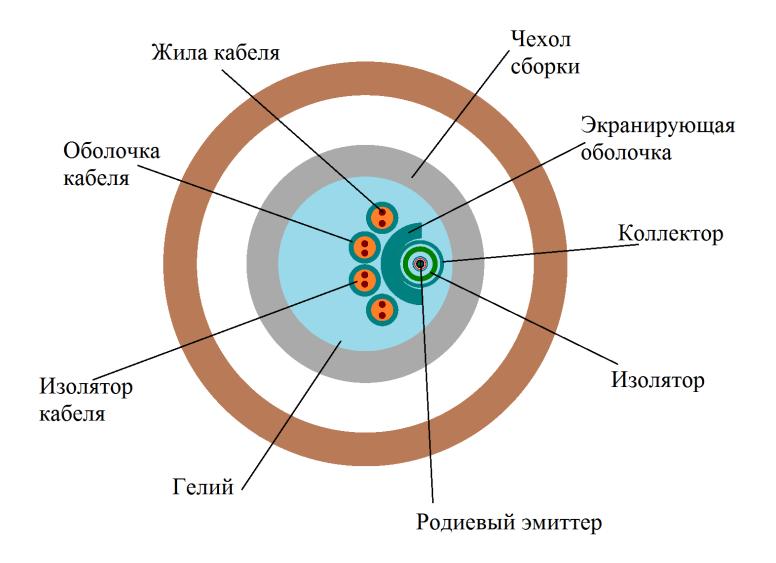
- Спектральная программа, предназначенная для расчёта нейтронно-физических характеристик :
 - однородных топливных решёток;
 - топливных кассет;
 - нейтронно-чувствительных датчиков внутриреакторного контроля реакторов ВВЭР.
- Расчет распределения нейтронов в кассете может проводиться с числом групп до 48.


Программа MCU-PD

- Аналоговые и весовые методы Монте-Карло
- Однородные и неоднородные уравнения переноса
- Уравнения переноса: нейтронов, фотонов, электронов и позитронов
- Трёхмерные системы практически любой сложности
- Детальное (поточечное) описание законов взаимодействия элементарных частиц с веществом
- Подключаемый программный модуль учёта изменения изотопного состава материалов в рассматриваемой системе (выгорание)
- Вычисления на многопроцессорных системах


Типы ТВС

Рассматривались различные типы ТВС, различающиеся по:


- Типу топлива: урановое или уран-плутониевое
- По количеству твэгов (0 или 24, Gd_2O_3 8 % вес.)
- По размещению ДПЗ (в центральном, смещённом или направляющем канале)

Модель TBC в MCU-PD

Гетерогенная модель ДПЗ в MCU-PD

Варианты расчёта

По MCU-PD и ТВС-М проводилась серия расчётов описанных ТВС в 7 точках по выгоранию (0, 5, 10, 20, 30, 40, $70 \, \frac{\text{MBT} \cdot \text{сут}}{\text{кгТМ}}$) в состояниях, различающихся по:

- Параметрам теплоносителя (температура, плотность, концентрация борной кислоты)
- Температуре топлива
- Наличию в ТВС опущенных поглощающих стержней

Также для некоторых ТВС проводились дополнительные расчёты с гетерогенным описанием ДПЗ.

Целевые функционалы

Переходная функция:

$$F = \frac{\bar{Q}_{6\text{твэл}}}{J}$$

Ток ДПЗ:

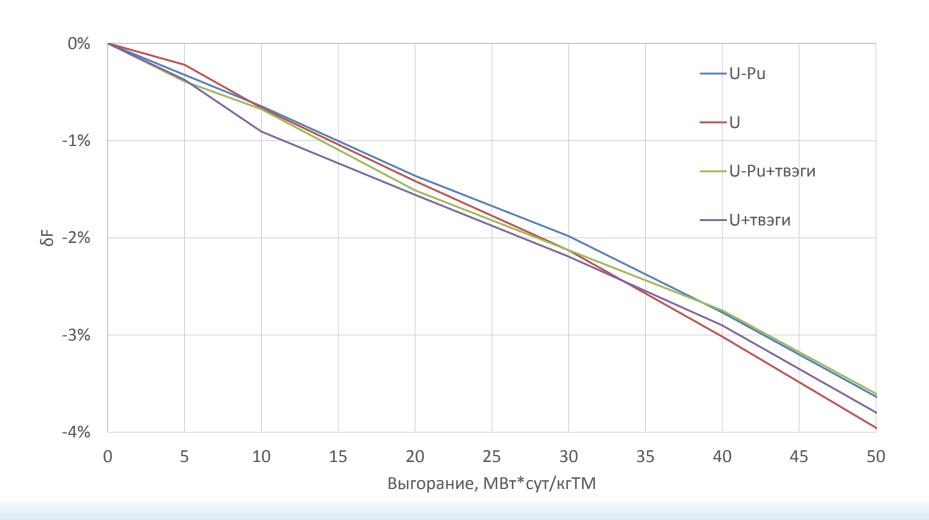
$$J = q_e V \sum_{k=1}^{10} \sum_{c,k}^{103} P_{k} \Phi_k P_{tot,k}$$

Коэффициент нагрузки шести твэл, окружающих ДПЗ:

$$k_c = \frac{312 \cdot \sum_{i=1}^{6} \sum_{j=1}^{N} E_j R_{i,j}}{6 \cdot \sum_{i=1}^{312} \sum_{j=1}^{N} E_j R_{i,j}}$$

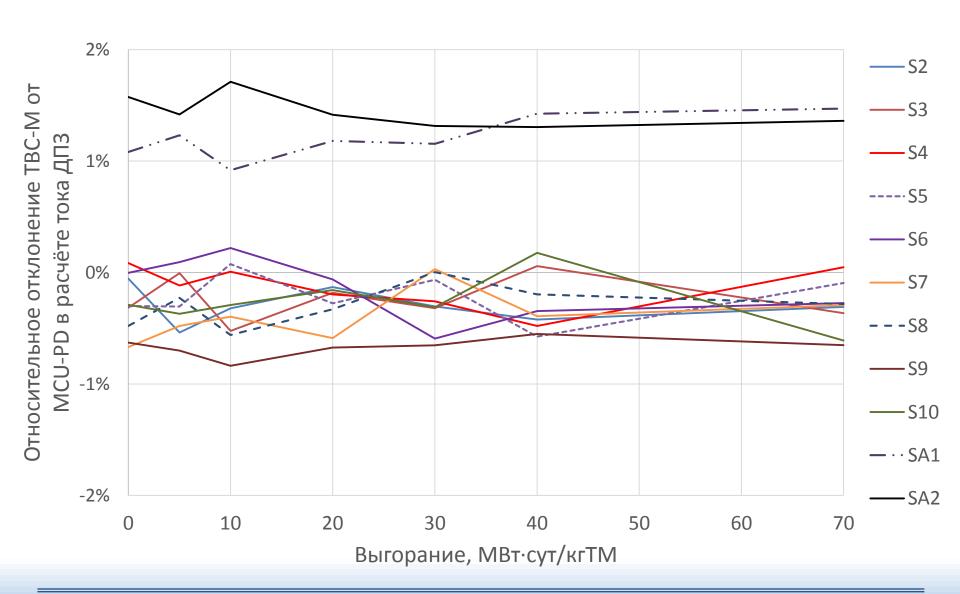
Параметры расчёта MCU-PD

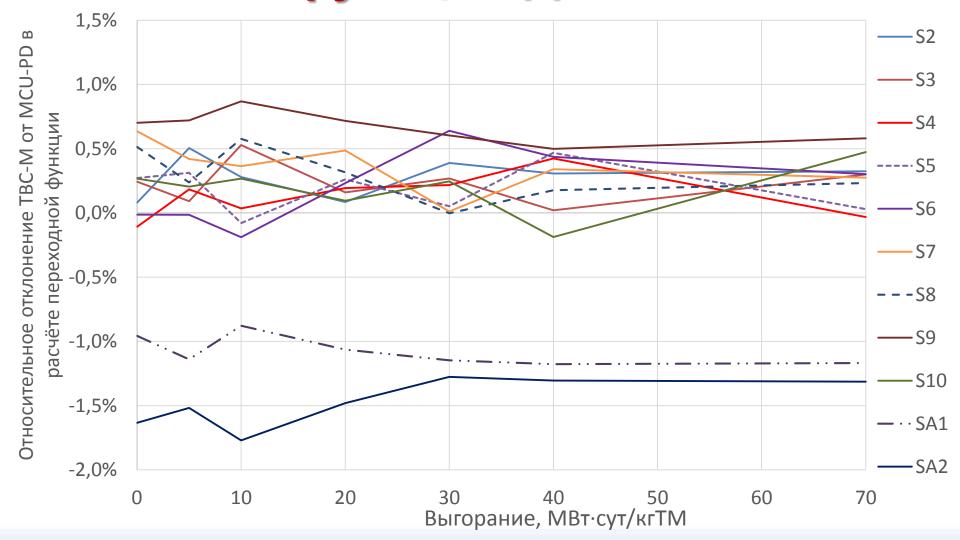
- Расчёты проведены на многопроцессорном вычислительном кластере НИЦ «Курчатовский институт».
- Проводилось 2 типа расчётов: расчёты выгорания и расчёты состояний. Расчёты выгорания проводились с шагом 0,25 мвт·сут кгтм.
- Всего было рассчитано свыше 600 состояний.
- Использовалось 48 вычислительных ядер в каждом расчёте.
- Для каждого состояния моделировалось 200 млн. нейтронных историй, что позволило оценить целевые функционалы со статистической погрешностью не более 0,4 %.
- Время расчёта одного состояния ~ 6 часов.
- Общее количество расчётного времени составило 210 дней.

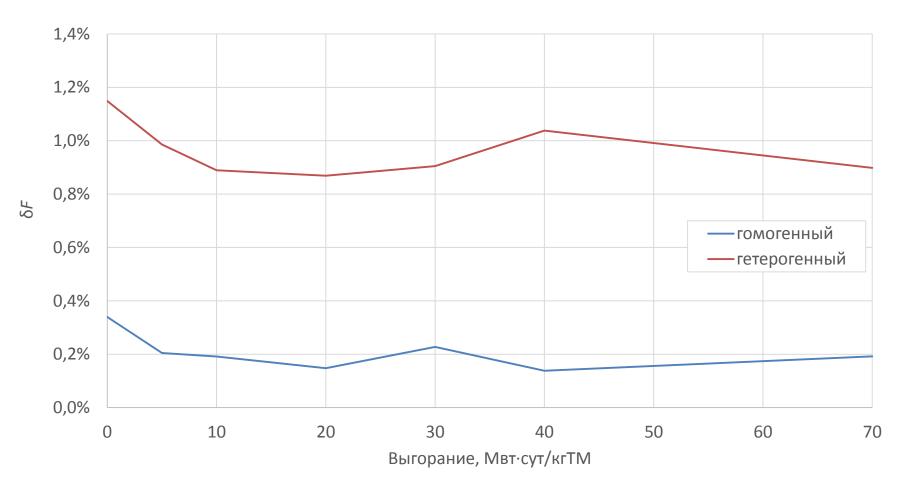


Рассчитываемые состояния

Название состояния	Обозначение	Комментарий
S2	_	Основное состояние
S3		$T_{\text{топл}} = 2000^{\circ} K > T_{\text{топл}}^{S2}$
S4	_	$T_{\text{топл}} = 575^{\circ} K < T_{\text{топл}}^{S2}$
S 5		$C_B = 1.5$ г/кг> C_B^{S2}
S6		$C_B=0$
S7	_	$C_B > C_B^{S2}$, $\gamma_{\text{T/H}} > \gamma_{\text{T/H}}^{S2}$
S8		$T_{\rm T/H} = 560^{\circ} K < T_{\rm T/H}^{S2}$
S9		$T_{\scriptscriptstyle \mathrm{T/H}} > T_{\scriptscriptstyle \mathrm{T/H}}^{S2}, \gamma_{\scriptscriptstyle \mathrm{T/H}} < \gamma_{\scriptscriptstyle \mathrm{T/H}}^{S2}$
S10	_	Холодное состояние
SA1	<u> </u>	Опущены ПЭЛы с $B_4\mathcal{C}$
SA2		Опущены ПЭЛы с $Dy_2O_3\cdot Ti\ O_2$


Систематический тренд


Результаты расчётов коэффициента нагрузки k_c


Результаты расчётов тока ДПЗ I

Результаты расчётов переходной функции ДПЗ *F*

Сравнение гомогенного и гетерогенного описания ДПЗ

Методическая погрешность при использовании гомогенного описания ДПЗ составляет ~ 0,8 %.

Анализ полученных результатов

Предельные отклонения TBC-M от MCU-PD в расчёте целевых функционалов ДПЗ.

Целевой функционал	Уран-плутониевое топливо	Урановое топливо
Коэффициент нагрузки $k_{\it c}$	0,7 %	1,6 %
Ток ДПЗ <i>I</i>	0,9 %	0,9 %
Переходная функция ДПЗ <i>F</i>	0,9 %	0,9 %
Ток ДПЗ / (при опущенных ПЭЛах)	1,7 %	2,0 %
Переходная функция ДПЗ <i>F</i> (при опущенных ПЭЛах)	1,8 %	2,0 %

Заключение

- 1. Впервые проведен сравнительный анализ переходных функций ДПЗ СВРК для ТВС ВВЭР с разными типами топлива, рассчитанных по спектральной программе ТВС-М и реализующей метод Монте-Карло программе МСU-PD.
- 2. Определены предельные отклонения TBC-M от MCU-PD для TBC с урановым и уран-плутониевым топливом при расчёте переходной функции ДПЗ, тока ДПЗ и коэффициента нагрузки шести твэлов, окружающих ДПЗ.
- 3. Подтверждена приемлемая для СВРК точность расчетов по программе ТВС-М.
- 4. Определено влияние гомогенизации ДПЗ на точность расчёта переходной функции ДПЗ.
- 5. Обнаружен не зависящий от типа ТВС небольшой систематический тренд к занижению значений переходной функции в расчёте ТВС-М относительно МСU-PD при больших выгораниях ТВС. Данный тренд совпадает с трендом, обнаруженным в работе, посвящённой определению линейного энерговыделения ТВС с помощью ДПЗ [2].

Спасибо за внимание!

Список литературы

- 1. HIGH TEMPERATURE INCORE TESTS OF SELFPOWERED NEUTRON DETECTORS, J. Ziebermayr and H. Bock, (Atominstitut, Vienna, Austria).
- 2. Курченков А.Ю., Ковель А.И., Мильто В.А., Мильто Н.В., Скороходов Д.Н., Липин Н.В., Воробьева Д.А, Чапаев В.М., Хватов В.А. Тепловая мощность ВВЭР, измеренная по показаниям ДПЗ. // Вопросы атомной науки и техники. Серия «Физика ядерных реакторов» 2018, выпуск 5, с.63-73