

Федеральное бюджетное учреждение «Научно-технический центр по ядерной и радиационной безопасности»

Проведение сравнительных расчетов изменения нуклидного состава ядерного топлива при выгорании

В.А. Лось «Нейтроника-2019» г. Обнинск

Предпосылки и особенности учета глубины выгорания при обосновании ядерной безопасности

- тенденция к увеличению начального обогащения ядерного топлива энергетических реакторов
- 😥 Необходимость перехода на уплотненное хранение ОЯТ
- Использование глубины выгорания в качестве параметра ядерной безопасности при обосновании безопасности хранения и обращения с ОЯТ
- Необходимость определения содержания в ОЯТ ряда нуклидов, значимых с точки зрения ядерной безопасности, с использованием программных средств
- Пеобходимость учета погрешностей и неопределенностей получаемых результатов

Требования нормативных документов

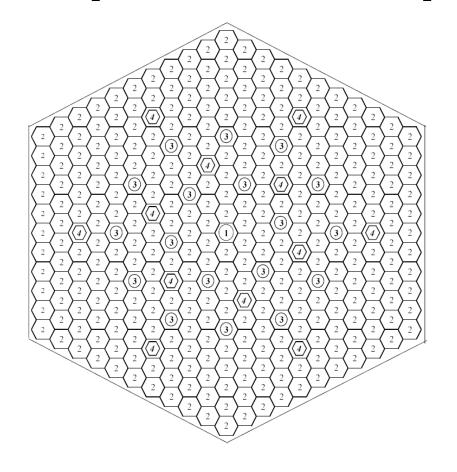
При анализе безопасности при хранении и обращении с ОЯТ с учетом глубины выгорания необходимо:

- ✓ Проводить оценку погрешностей методов расчета
- ✓ Учитывать погрешности определения обогащения и нуклидного состава ОЯТ и допуски при изготовлении ЯТ
- ✓ Проводить оценку неопределенностей получаемых результатов
- ✓ Использовать консервативный подход

Использование глубины выгорания ядерного топлива в качестве параметра ядерной безопасности должно быть обосновано в проекте

Цели

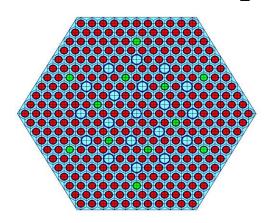
Исследование влияния на результаты расчетов особенностей использования различных:

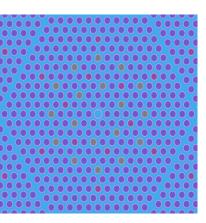

- 🕑 программных средств
- 🕑 библиотек оцененных ядерных данных
- допущений и приближений при построении расчетных моделей

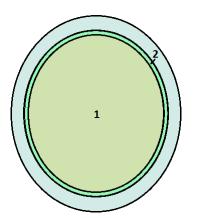
Проведение сравнительных расчетов изменения нуклидного состава ядерного топлива в процессе выгорания

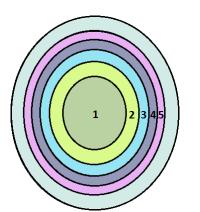
Описание расчетного бенчмарк-эксперимента и основные сведения о расчетной модели

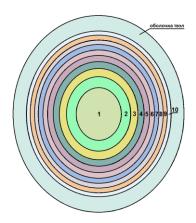
Расчетный бенчмарк-эксперимент «A VVER-1000 LEU and MOX Assembly Computational Benchmark. Specification and Results» (OECD/NEA)




- **TBC** реактора типа ВВЭР-1000
- **Урановое топливо**
- **№** Твэлы с обогащением 3,7% по ²³⁵U
- igoplus Tвэги с обогащением 3,6% по ^{235}U и с содержанием 4% масс. $\mathrm{Gd}_2\mathrm{O}_3$
- Глубина выгорания ЯТ − 40 МВт·сут/тТМ
- Условие полного отражения нейтронов на границе модели


Особенности проведенных расчетов




- Программные средства − SCALE, SERPENT
- **№** Библиотеки оцененных ядерных данных ENDF/B-VII.0, JEFF-2.2, JEFF-3.1.1
- **Орункциональные модули ПС SCALE, реализующие разные расчетные методы KENO (метод Монте-Карло), NEWT (метод дискретных ординат)**
- Радиальное разбиение топливной части твэл на зоны − 2, 5, 10 зон

Учет глубины выгорания при обосновании ядерной безопасности при хранении и обращении с ОЯТ

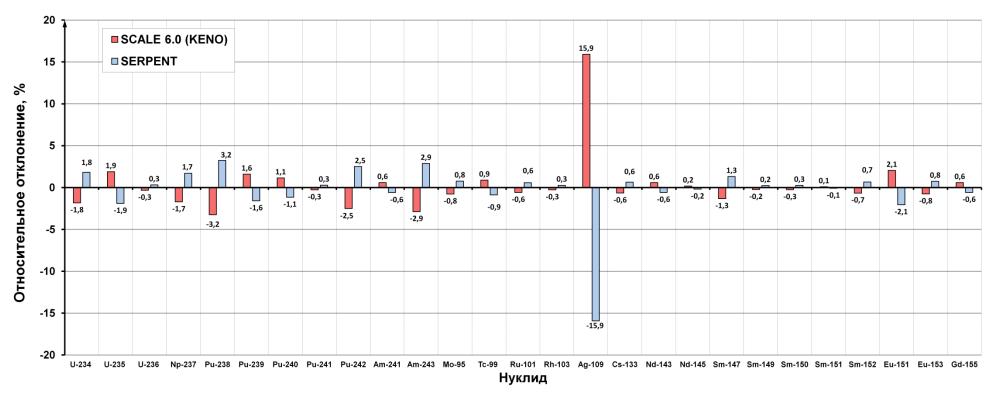
Документы Комиссии по ядерному регулированию США (NRC)

NUREG/CR-6764 «Burnup Credit PIRT Report»

NUREG/CR-6700 «Nuclide Importance to Criticality Safety, Decay Heating and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel»

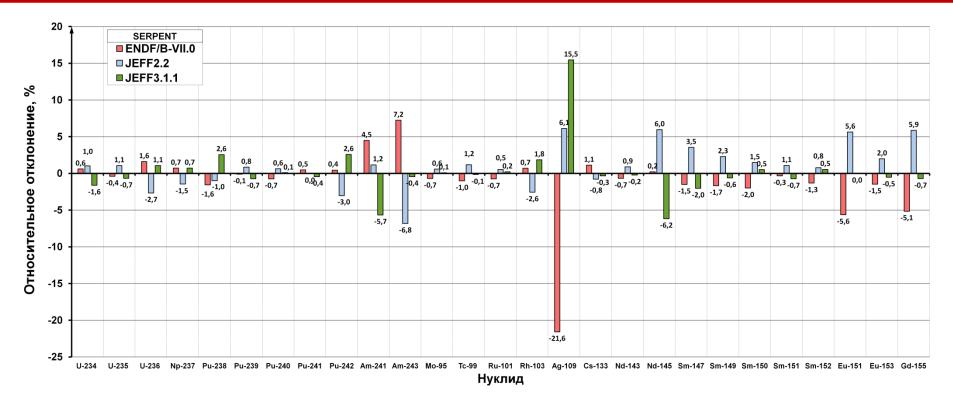
NUREG/CR-6701 «Review of Technical Issues Related to Predicting Isotopic Compositions and Source Terms for High-Burnup LWR Fuel»

NUREG/CR-6665 «Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel»


Нуклиды, содержание которых в ОЯТ оказывает существенное влияние на величину $K_{9\phi\phi}$

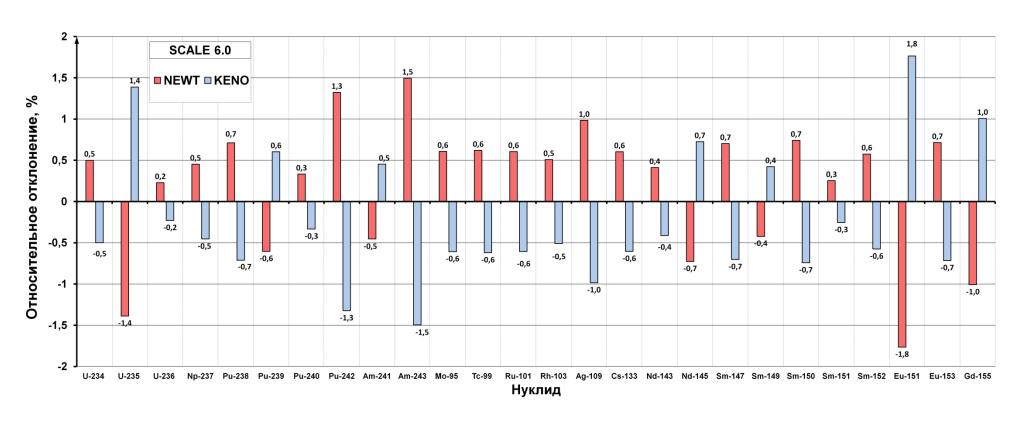
Группа	Нуклиды		
Актиниды	²³⁴ U, ²³⁵ U, ²³⁶ U, ²³⁸ U, ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu, ²⁴¹ Am, ²⁴³ Am, ²³⁷ Np		
Продукты деления	⁹⁵ Mo, ⁹⁹ Tc, ¹⁰¹ Ru, ¹⁰³ Rh, ¹⁰⁹ Ag, ¹³³ Cs, ¹⁴³ Nd, ¹⁴⁵ Nd, ¹⁴⁷ Sm, ¹⁴⁹ Sm, ¹⁵⁰ Sm, ¹⁵¹ Sm, ¹⁵¹ Eu, ¹⁵² Sm, ¹⁵³ Eu, ¹⁵⁵ Gd		

Влияние выбора программных средств



- Не смотря на использование одного метода расчета (Монте-Карло), в разных программных средствах могут применяться различные методы улучшения сходимости
- Максимальное относительное отклонение концентрации наиболее значимых с точки зрения ядерной безопасности нуклидов может составить 1,9 %

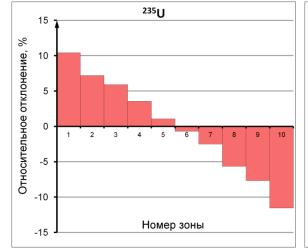
Влияние используемой библиотеки оцененных ядерных данных

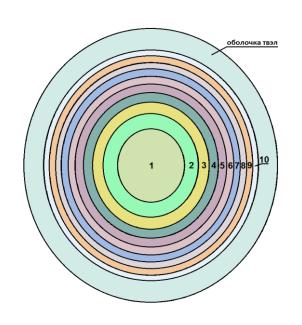

Кумулятивный выход нуклида ¹⁰⁹Ag при делении:

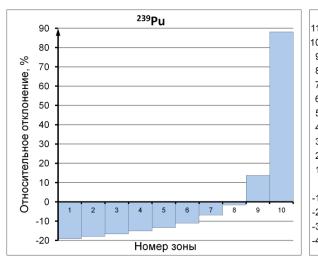
Библиотека	Выход	Погрешность, %
ENDF/B-VII.0	3,12·10-4	~ 60
JEFF2.2	2,60·10-4	< 1
JEFF3.1.1	2,80·10-4	~3

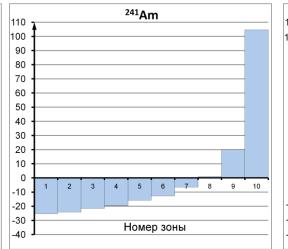
Максимальное относительное отклонение концентрации наиболее значимых с точки зрения ядерной безопасности нуклидов может составить 5,9 %

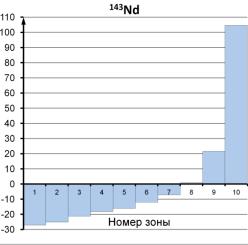
Влияние используемых методов расчета

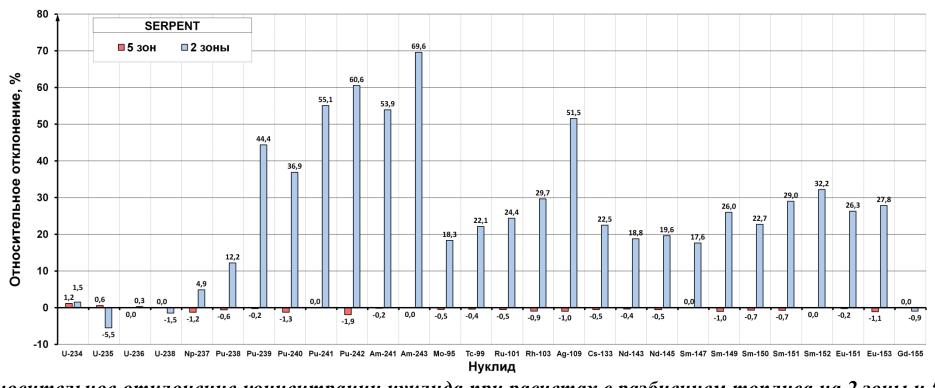



Учет блок-эффекта при построении расчетной модели (1/2)



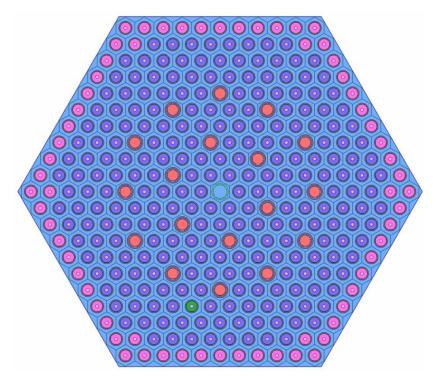

- **Э** Неравномерное распределение плотности потока нейтронов по радиусу твэла
- Неравномерное выгорание актинидов и накопление продуктов деления
- Значительная экранировка ядер урана в центральной части твэг





Учет блок-эффекта при построении расчетной модели (2/2)

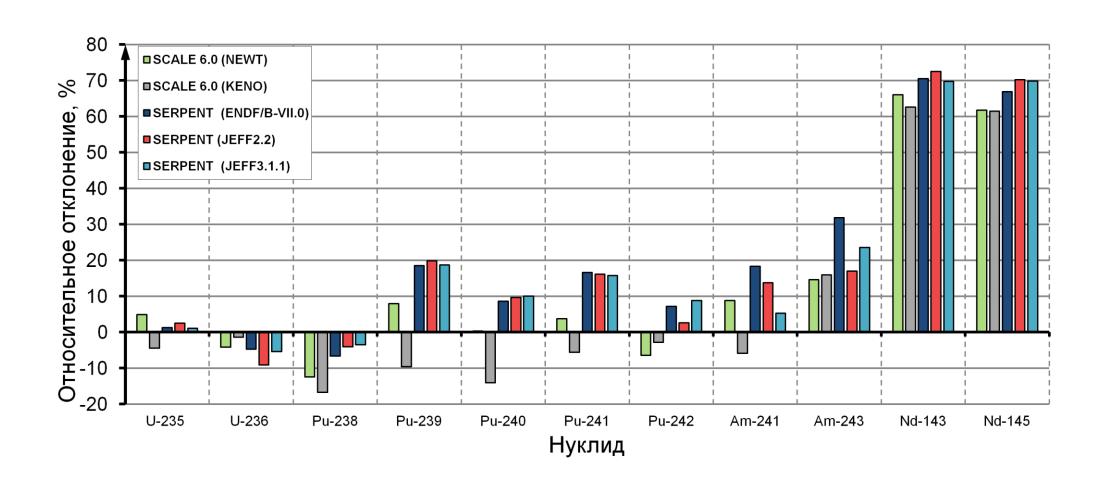
Относительное отклонение концентрации нуклида при расчетах с разбиением топлива на 2 зоны и 5 зон от концентрации нуклида при разбиении топлива на 10 зон


Использование разбиения топливной части твэл на 5 зон существенно повышает:

- 😥 точность результата по сравнению с использованием разбиения на 2 зоны
- 📀 скорость расчета по сравнению с использованием разбиения на 10 зон

Описание бенчмарк-эксперимента

Бенчмарк-эксперимент «Simulation of Low-Enriched Uranium (LEU) Burnup in Russian VVER Reactors with the HELIOS Code Package» содержит результаты послереакторных исследований образцов топлива реактора типа ВВЭР-1000



История облучения исследуемого образца топлива реактора типа ВВЭР-1000 энергоблока № 2 Балаковской АЭС

№ цикла	Работа на мощности, сут	Останов, сут	Глубина выгорания, МВт·сут/тТМ
1	283	189	15,705
2	322	76	31,938
3	359	-	45,267

Сравнение результатов расчетов с экспериментальными данными

Заключение

- При проведении обоснования ядерной безопасности с учетом глубины выгорания ядерного топлива необходимо учитывать множество факторов, приводящих к неопределенности определения концентрации нуклидов, в том числе неопределенности, связанные с используемыми для расчетов программными средствами, библиотеками оцененных ядерных данных, расчетными методами и приближениями
- ullet Влияние неопределенностей определения концентрации нуклидов, содержание которых в ОЯТ оказывает существенное влияние на величину $K_{_{2}\phi\phi}$, может достигать значимых величин, что приведет к некорректной оценке величины $K_{_{2}\phi\phi}$ с учетом содержания данных нуклидов в ОЯТ
- © С целью минимазации расхождений результатов расчетов от экспериментально полученных данных при описании бенчмарк-экспериментов важно приводить подробную информацию об образце и истории его облучения, а также данные об используемых методах определения концентрации нуклидов в образце и их погрешностях
- Проведение валидации программ для ЭВМ, используемых для построения расчетных моделей при обосновании ядерной безопасности хранения и обращения с ОЯТ с учетом глубины выгорания, должно основываться на сравнении результатов расчетов с экспериментальными данными

Спасибо за внимание!