

Валидация группового физического модуля в программе расчета нейтронной кинетики КИР2 на основе бенчмарк-теста C5G7

Авторы: Дьячков Иван Игоревич

Иоаннисиан Михаил Викторович

Введение

- В НИЦ «Курчатовский институт» разрабатывается программа КИР2 для моделирования стационарных и нестационарных задач прямым методом Монте-Карло. На текущем этапе разработки стоит задача верификации.
- настоящее время существенная часть бенчмарков, описывающих нейтронной кинетики, представлена в виде математических тестовых задач, и бенчмарки практически отсутствуют \mathbf{c} полным описанием экспериментальных данных. Для математических бенчмарков имеется большой объем кросс-верификационных расчетов по программам, основанных на Такой набор верифицировать различных методах. данных позволяет прямой метод Монте-Карло разрабатываемый вне зависимости OT типа используемых библиотек ядерных констант.
- КИР2 был программы СВЯЗИ \mathbf{c} ЭТИМ. ДЛЯ создан И нейтронно-физических энергетической зависимости реализован алгоритм Ha свойств групповые через макропараметры. начальверификации был бенчмаркной стадии модуля выполнен расчет теста C5G7. В настоящей работе представлены результаты расчета теста, их анализ и сравнение с результатами реперной программы МСNР и программ, использующие детерминистические методы.

Програмные средства

КИР2 — программа, предназначенная для решения неоднородного стационарного и нестационарного и однородного уравнений переноса нейтронов аналоговыми методами Монте-Карло на основе оценённых ядерных данных в системах с трёхмерной геометрией на одноядерных и многоядерных компьютерах.

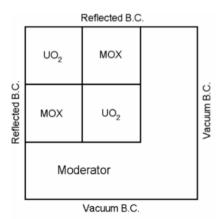

Модуль МАГМА (МАлоГрупповой Модуль с учетом Анизотропного рассеяния).

Рис.1 Схема алгоритма группового модуля

Бенчмарк-тест C5G7

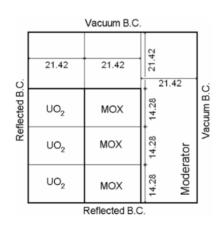
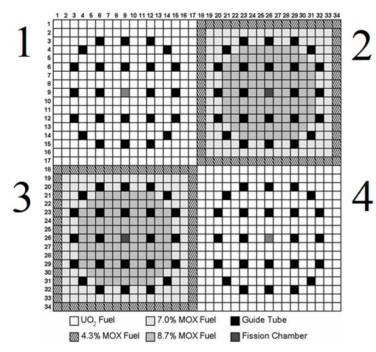



Рис.2. Схема активной зоны бенчмарк-теста С5G7

Бенчмарк C5G7 представляет собой расчет 3 вариантов состояния активной зоны:

- Все поглощающие стержни находятся в поднятом состоянии (Unrodded).
- Стержни ТВС 1 опускаются на 1/3 глубины Рисунок 3. Схема расстановки элементов в сборке С5G7 (Rodded A).
- Стержни ТВС 1 опускаются на 2/3 глубины, стержни ТВС 2, ТВС 3 опускаются на 1/3 глубины (Rodded B).

Методики сравнения программ

Для сопоставления результатов расчета распределения энерговыделения по КИР2 с реперными были выбраны две методики сравнения программ:

1) Сравнение программ на основе процентный доли твэлов, энерговыделения которых вошли в доверительные интервалы реперной программы, которое выполняется по следующему неравенству: $|E_n^{MCNP} - E_n^{Code}| \le \sqrt{(E_n^{MCNP} * e_n^{MCNP})^2 + (E_n^{CODE} * e_n^{CODE})^2)}$

где E_n^{MCNP} и e_n^{MCNP} - энерговыделение и доверительный интервал n-ого твэла программы MCNP(Ref) E_n^{CODE} и e_n^{CODE} - энерговыделение и доверительный интервал n-ого твэла сравниваемой программы.

2) Сравнение по «взвешенным» отклонениям: AVG (среднее отклонение от MCNP(Ref)), RMS (среднеквадратичное отклонение) и RME (среднее относительное отклонение), где:

$$AVG = \frac{\sum_{n=1}^{N} |e_n|}{N}, \qquad RMS = \sqrt{\frac{\sum_{n=1}^{N} e_n^2}{N}} \qquad MRE = \frac{\sum_{n=1}^{N} |e_n| * p_n}{N * p_{avg}}$$

где e_N - процентное отклонение энерговыделения n-ого твэла от реперных значений; p_n - мощность n-ого твэла, p_{avg} - средняя мощность твэлов

Сравнение программ основанных на методе Монте-Карло

Процентная доля твэлов, энерговыделения которых вошли в доверительные интервалы

	Конфигурация Unrodded						
Программа		68%	90%	98%	99.8%		
KIR2*	$2,5\ 10^{10}$	49,5	78,7	89,2	91,9		
KIR2	5 10 ⁸	67,0	93,3	98,1	99,8		
MCNP	3 108	64,8	93,3	98,7	99,8		
MCNP*	5 10 ⁸	65,7	91,3	97,6	99,8		
VIM	5 10 ⁸	65,7	92,6	98	99,8		
UNKMK	$2,7 \ 10^9$	55,2	84,6	91,7	95,6		
	Конфигурация Rodded A						
KIR2*	$2,5 \ 10^{10}$	49,5	78,7	88,3	91,7		
KIR2	5 10 ⁸	73,7	93,0	98,6	99,8		
MCNP	$3 \ 10^8$	65,9	92,8	97,8	99,8		
MCNP*	5 10 ⁸	62,8	93,1	97,4	99,6		
VIM	5 10 ⁸	64,4	94,1	98	99,8		
UNKMK	$2,7\ 10^9$	51,7	83,7	92,6	96,7		
	Конфигурация Rodded B						
KIR2*	$2,5 \ 10^{10}$	50,1	81,1	89,7	92,2		
KIR2	5 10 ⁸	68,1	92,7	97,7	99,6		
MCNP	3 108	59,1	90,0	96,3	99,3		
MCNP*	5 108	65,7	94,1	98,7	99,6		
VIM	5 108	63,9	93,5	98,3	99,6		
UNKMK	2,7 109	55,7	85,2	94,1	97		

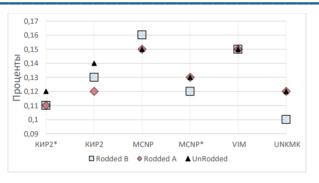


Рисунок 4. Зависимость значений AVG от программы

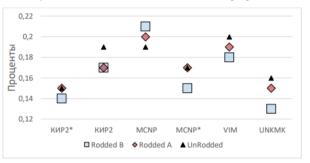
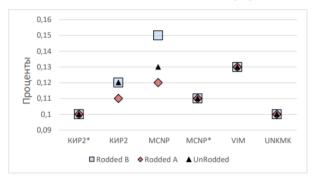



Рисунок 5. Зависимость значений RMS от программы

Использование результатов программы КИР2 в качестве реперных (1)

Зависимость процентной доли твэлов, энерговыделения которых вошли в доверительные интервалы, для конфигурации Rodded A от статистики расчета КИР2*

	Статистика расчета				
Программа	1*10 ⁸	5*10 ⁸	$2,5*10^{10}$		
ATTILA	86%	53%	26%		
CRX	71%	39%	37%		
PARTISN	93%	86%	73%		
TORT-PSU	81%	44%	23%		
UNKGRO	21%	9%	6%		

Ошибки AVG, RMS, MRE для варианта UNRODDED

Программа	AVG		RMS		MRE					
	КИР2*	MCNP(Ref)	КИР2*	MCNP(Ref)	КИР2*	MCNP(Ref)				
	СЛОЙ 1									
UNKMK	0,122	0,173	0,156	0,224	0,052	0,065				
PARTISN	0,153	0,180	0,184	0,230	0,083	0,080				
MCNP*	0,159	0.194	0,205	0.253	0,064	0.073				
VIM	0,175	0,224	0,228	0,290	0,065	0,087				
ATTILA	0,196	0,210	0,218	0,270	0,072	0,070				
CRX	0,216	0,240	0,277	0,320	0,084	0,090				
MCCG3D	0,226	0,260	0,292	0,330	0,129	0,120				
UNKGRO	0,905	0,960	1,230	1,290	0,367	0,400				
СЛОЙ 2										
UNKMK	0,125	0,192	0,171	0,249	0,036	0,058				
MCNP*	0,170	0.218	0,224	0.283	0,051	0,066				
VIM	0,195	0,192	0,254	0,249	0,059	0,058				
PARTISN	0,188	0,190	0,206	0,240	0,064	0,060				
ATTILA	0,211	0,200	0,236	0,260	0,062	0,060				
CRX	0,226	0,260	0,282	0,350	0,066	0,070				
MCCG3D	0,271	0,280	0,319	0,500	0,089	0,090				
UNKGRO	0,985	1,060	1,433	1,530	0,277	0,300				
СЛОЙ 3										
UNKMK	0,181	0,260	0,242	0,344	0,030	0,044				
MCNP*	0,257	0,299	0,332	0,388	0,043	0,100				
VIM	0,269	0,335	0,353	0,435	0,043	0,057				
ATTILA	0,203	0,400	0,238	0,460	0,050	0,080				
CRX	0,205	0,280	0,260	0,370	0,034	0,050				
PARTISN	0,333	0,270	0,373	0,360	0,049	0,040				
MCCG3D	0,551	0,440	0,635	0,560	0,090	0,070				
UNKGRO	1,283	1,400	1,728	1,860	0,189	0,200				

Использование результатов программы КИР2 в качестве реперных (2)

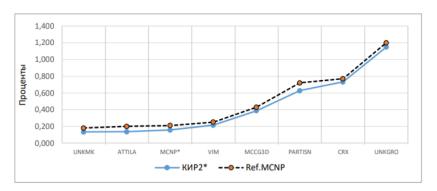


Рисунок 4. Зависимость значений AVG от программы для конфигурации Rodded B, 2 слой

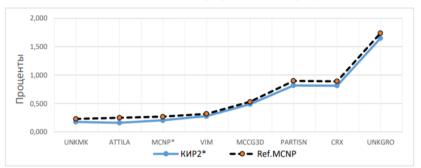


Рисунок 5. Зависимость значений RMS от программы для конфигурации Rodded B, 2 слой



Рисунок 6. Зависимость значений MRE от программы для конфигурации Rodded B, 2 слой

Выводы:

- Таким образом, валидация программы КИР2 с разработанным групповым модулем (МАГМА) продемонстрировала корректность работы алгоритмов. Результаты расчета Кэфф и энерговыделения по КИР2 хорошо согласуются с результатами реперной программы MCNP(Ref) как в пределах доверительных интервалов, так и по отклонениям AVG, RMS и RME.
- При анализе результатов, было замечено, что при использовании в качестве реперных расчетные данные программы КИР2 со статистикой 25 млрд., то снижаются оценки отклонений AVG, RMS, RME для большинства результатов расчета по детерминистическим кодам.
- Следует отметить, что по мере увеличения расчетной статистики уменьшаются значения доверительных интервалов, и в пределе они стремятся к нулевым значениям. Тогда, использование интервалов для сопоставления становится некорректным, поскольку все сравниваемые результаты будут лежать за их границами.

Спасибо за внимание!