

Моделирование экспериментов на установке ASPIS с использованием метода Монте-Карло

Усынина С.Г., Саляев А.В., Бронников С.В.

Всероссийская научно-техническая конференция «Нейтронно-физические проблемы атомной энергетики»

Госкорпорация «Росатом», АО "ГНЦ РФ ФЭИ", г. Обнинск

THE SCALE 6.2.2

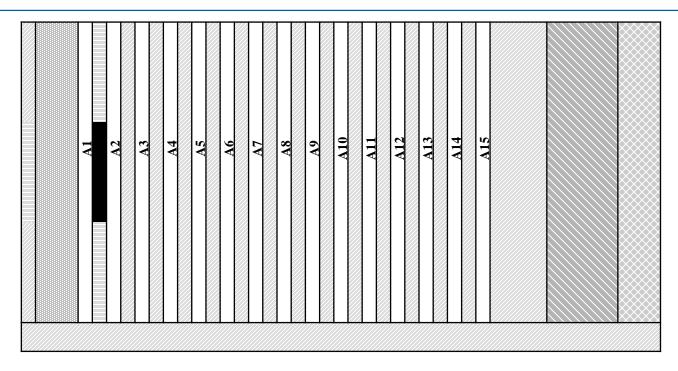
интегрированная структура вычислительных модулей,

в т.ч. 3 детерминистских модуля 3 модуля Монте-Карло

Обеспечивает всесторонний, верифицированный и валидированный набор инструментов для численного моделирования задач реакторной физики, радиационной защиты, расчета характеристик облученного топлива, а также средства анализа чувствительности и неопределенности результатов

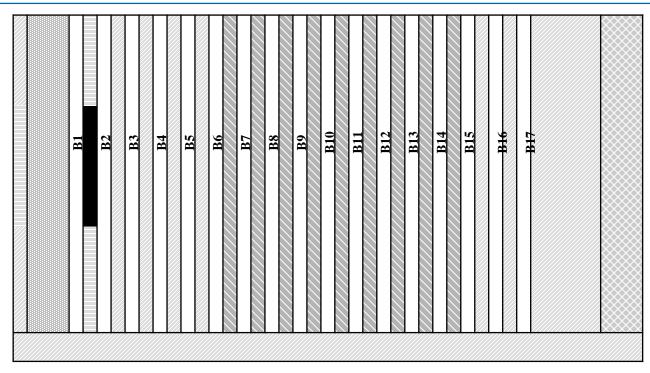
ЭКСПЕРИМЕНТАЛЬНЫЕ КОМПОЗИЦИИ

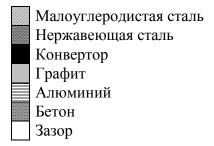
ASPIS


исследовательский легководный реактор NESTOR с замедлителем из графита тепловой мощностью до 30 кВт в Winfrith

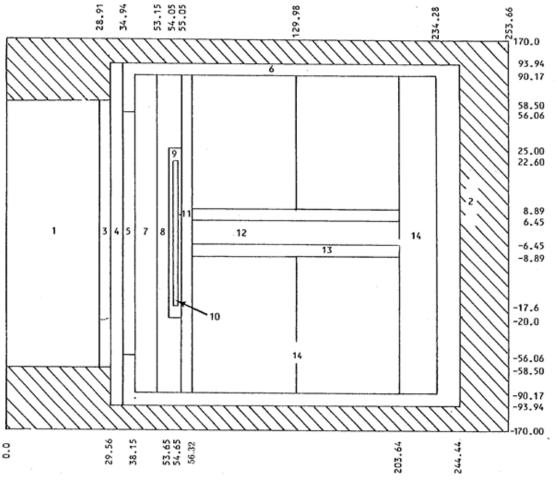
ЭКСПЕРИМЕНТЫ

- IRON 88
- JANUS (Фаза 1)
- Winfrith Graphite Benchmark


IRON 88


А1-А15 – местоположения детекторов

Малоуглеродистая сталь
Нержавеющая сталь
Конвертор
Графит
Алюминий
Бетон
Зазор


JANUS (Фаза 1)

В1-В17 - местоположения детекторов

Winfrith Graphite Benchmark

1, 7, 12-14 – Графит; 3, 5, 9, 11 – AI; 10 – Конвертор; 6 – Малоуглеродистая сталь; 2 – Бетон

ИЗМЕРЕНИЯ

IRON 88

 $Au^{197}(n,\gamma)Au^{198}$ $S^{32}(n,p)P^{32}$ $In^{115}(n,n')In^{115m}$

 $Rh^{103}(n,n')Rh^{103m}$ $A1^{27}(n,\alpha)Na^{24}$

JANUS (Фаза 1)

 $Au^{197}(n,\gamma)Au^{198}$ $S^{32}(n,p)P^{32}$

Rh¹⁰³(n,n')Rh^{103m}

Winfrith Graphite Benchmark

 $S^{32}(n,p)P^{32}$ $In^{115}(n,n')In^{115m}$

 $Rh^{103}(n,n')Rh^{103m}$ $A1^{27}(n,\alpha)Na^{24}$

МЕТОДИКА РАСЧЕТОВ

SCALE 6.2.2 \Rightarrow MAVRIC \Rightarrow

DENOVO (МДО)

scale.rev12.xn200g47v7.1

MONACO (Монте-Карло)

ce_v7.1_endf

Библиотеки основаны на файлах оцененных ядерных данных ENDF/B-VII.1

РЕЗУЛЬТАТЫ

$$\varepsilon = \frac{P_D - P_R}{P_R} \cdot 100\%$$

где P_R – экспериментальное значение скорости реакции

P_D – значение скорости реакции по ПК SCALE

РЕЗУЛЬТАТЫ IRON 88

Дет-ор	S ³² (n,p)		In ¹¹⁵ (n,n')		Rh ¹⁰³ (n,n')		Au ¹⁹⁷ (n,α)		Al ²⁷ (n,α)	
	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%
A2	6.5	-13.2	4.5	-6.1	5.1	-3.4	4.2	-9.1		
А3	6.5	-11.3	4.5	-10.1	5.2	-2.0	4.2	-8.1	4.7	13.3
A4	6.5	-9.6	4.5	-9.6	5.1	0.0	4.2	-3.2		
A5	6.5	-9.4	4.5	-10.8	5.1	-1.3	4.2	-1.4	4.7	15.8
A6	6.5	-9.9	4.5	-9.3	5.2	1.7	4.2	0.4	4.7	19.7
A7	6.5	-9.6	4.5	-10.9	5.1	1.6	4.2	1.0	4.7	21.0
A8	6.6	-9.9	4.5	-12.4	5.1	1.7	4.2	0.8		
A9	6.5	-11.2	4.6	-10.8	5.2	2.1	4.2	-0.2		
A10	6.5	-10.8	4.6	-9.4	5.2	1.9	4.2	-0.1		
A11	6.5	-11.9	4.7	-8.4	5.2	1.0	4.2	-0.9		
A12	6.5	-12.7			5.1	1.2	4.2	-1.4		
A13	6.9	-13.7			5.2	4.1	4.2	1.6		
A14	8.6	-9.0			5.1	5.2	4.2	2.1		
A15	21.0	-12.3					4.2	1.4		

РЕЗУЛЬТАТЫ JANUS (Фаза 1)

Дет-ор	S ³² (n,p)	Rh ¹⁰³	(n,n')	Au ¹⁹⁷ (n,α)		
дет-ор	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%	
A2	6.4	-13.1	5.1	-3.9	4.2	0.7	
А3	6.5	-8.6	5.1	-0.7	4.2	-0.6	
A4	6.7	-7.2	5.1	-1.1	4.2	2.0	
A5	6.4	-6.7	5.1	-0.1	4.2	2.8	
A6	6.5	-7.0	5.1	-1.2	4.2	7.3	
A7	6.4	-5.6	5.4	1.5	4.2	12.9	
A8	6.5	-7.3	5.1	-0.3	4.2	17.1	
A9	6.5	-5.5	5.4	0.5	4.2	19.3	
A10	6.6	-5.5	5.4	1.4	4.2	20.6	
A11	6.6	-3.6	5.4	2.4	4.2	20.6	
A12	6.5	-5.9	5.4	3.8	4.2	22.3	
A13	7.1	-1.5	5.4	7.4	4.2	26.1	
A14	6.7	-3.5	5.4	7.7	4.2	25.3	
A15	9.5	3.0	5.4	7.3	4.2	25.7	
A16	12.7	-4.9	5.4	4.6	4.2	20.3	
A17	6.4	-13.1	5.4	7.6	4.2	19.4	

РЕЗУЛЬТАТЫ W. Graphite Benchmark

Дет- ор	S ³² (n,p)		In ¹¹⁵ (n,n')		Rh ¹⁰³	(n,n')	Al ²⁷ (n,α)	
	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%	ПИ, %	00,%
0	3.7	3.0	3.7	6.1	3.7	8.2	3.7	14.7
5	3.7	-0.7	3.7	4.2	3.7	6.3	3.7	9.8
10	3.7	0.4	3.7	-0.5	3.7	2.7	3.7	13.7
15	3.7	0.6	3.7	0.8	3.7	2.1	3.7	12.9
20	3.7	0.7	3.7	-0.6	3.7	0.2	3.7	11.3
30	3.7	2.8	3.7	0.5	3.7	-2.5	3.7	14.4
40	3.7	2.0	3.7	-3.9	3.7	-6.1		
50	3.7	6.7	3.7	-4.6	3.7	-11.6		
60	3.7	1.9	3.7	-15.2	3.7	-17.0		
70	3.7	3.0	3.7	-17.8	3.7	-31.0		

ОБСУЖДЕНИЕ

Относительные отклонения большинства полученных расчетных результатов от экспериментальных данных находятся в пределах погрешности измерений. Вместе с тем наблюдается стабильное занижение результатов расчета для скоростей реакций S³²(n,p) и In¹¹⁵(n,n') в эксперименте IRON 88, а также занижение результатов расчета для скоростей реакций In¹¹⁵(n,n') и Rh¹⁰³(n,n') для наиболее удаленных позиций детекторов в эксперименте Winfrith Graphite Benchmark. Для скорости реакции Au¹⁹⁷(n,g) в эксперименте JANUS (фаза 1) все полученные расчетные данные после границы малоуглеродистой и нержавеющей сталей дают стабильное завышение результатов. Результаты для скорости реакции Al²⁷(n,a) можно считать удовлетворительными, принимая во внимание, что данная реакция имеет очень высокий энергетический порог (~ 5 МэВ).

Можно отметить также, что существует дополнительная неопределенность в сравнении, связанная с описательной частью экспериментов, устранить которую не представляется возможным. Сюда можно отнести неточности определения геометрии установки и композиций защиты, неопределенность в сведениях о точном позиционировании детекторов и т.д. Так, например, смещение точек детектирования в эксперименте Winfrith Graphite Benchmark на 0.25 мм приводит к отличию в относительном отклонении для разных точек детектирования примерно 2–4 %.

Таким образом, с учетом вышесказанного, можно отметить хорошее согласие результатов расчетов скоростей различных реакций по ПК SCALE 6.2.2 с указанными выше библиотеками с экспериментальными данными.

СПАСИБО ЗА ВНИМАНИЕ!

