ФГУП «РФЯЦ-ВНИИТФ имени академика Е.И. Забабахина»

О ТРАНСМУТАЦИИ МИНОРНЫХ АКТИНОИДОВ В ЖИДКОСОЛЕВОМ РЕАКТОРЕ-СЖИГАТЕЛЕ

Белоногов М.Н., Волков И.А., Модестов Д.Г., Симоненко В.А., Хмельницкий Д.В.

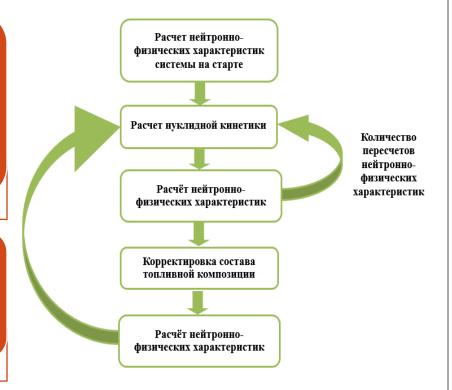
Научно-техническая конференция «Нейтронно-физические проблемы атомной энергетики» («НЕЙТРОНИКА-2019»), 27 – 29 ноября 2019, г. Обнинск

ВВЕДЕНИЕ

Существенный вклад в долговременную активность и энерговыделение ОЯТ легководных реакторов вносят долгоживущие изотопы МА (Np, Am и Cm): ~370 тыс. т ОЯТ (накоплено в мире к 2013 г.), из них более 300 т – MA [1].

В качестве одного из подходов к уменьшению объемов МА предлагается их трансмутация в специализированном жидкосолевом реакторе-сжигателе (ЖСР-С) [2–4]. Достоинства такого подхода: (1) отсутствие необходимости фабрикации топливных таблеток, (2) возможность организации «непрерывной» (порционной) переработки топливной композиции, (3) возможность достижения высокой производительности трансмутации МА [2].

Цель работы — исследование основных закономерностей трансмутации МА в ЖСР-С и определение характеристик оптимальных режимов работы реактора


- [1] Status and Trends in Spent Fuel and Radioactive Waste Management. IAEA Nuclear Energy Series № NW-T-1.14. Vienna: IAEA, 2018.
- [2] Degtyarev A.M., Myasnikov A.A., Kolyaskin O.E. et. al. Molten-salt subcritical transplutonium actinide incinerator. Atomic energy, 2013, Vol. 114, No. 4, p. 225 232 (in Russian).
- [3] Ignatiev V., Feynberg O. Progress in Development of Li, Be, Na/F Molten Salt Actinide Recycler and Transmuter Concept. International Congress on Advanced in Nuclear Power Plants, Société Française d'Énergie Nucléaire, Nice, France, Paper 7548, 2007.
- [4] Ignatiev V., Feynberg O., I. Gnidoi, et al. Molten salt actinide recycler and transforming system without and with Th-U support: Fuel cycle flexibility and key material properties. Ann. Nucl. Energy, 2014, v. 64, p. 408–420.

Методика расчетов

Расчеты нейтронно-физических характеристик и нуклидной кинетики выполнялись с использованием программного комплекса ПРИЗМА+РИСК [1, 2] и нейтронных констант ENDF/B-VII

При корректировке состава топливной композиции из нее удалялись все ПД и добавлялось эквивалентное количество топлива подпитки, состоящее из МА

При длительной эксплуатации реактора он будет работать в режиме, близком к равновесному, поэтому основное внимание уделено характеристикам реактора в равновесном режиме трансмутации МА.

- [1] Зацепин О.В., Кандиев Я.З., Катаева Е.А. Расчёты методом Монте-Карло по программе ПРИЗМА нейтроннофизических характеристик активной зоны ВВЭР-1000. ВАНТ (серия Физика ядерных реакторов), 2011, вып. 4, с. 64-74.
- [2] Модестов Д.Г. Программа решения задач ядерной кинетики РИСК-2014: Препринт РФЯЦ-ВНИИТФ № 243, 2014.

Постановка задачи

Расчеты выполнялись для модельной системы в виде бесконечной среды.

Солевой растворитель – эвтектика LiF–NaF–KF 46,5LiF–11,5NaF–42KF (% мол)

Температура топливной композиции 650 ^оС

Изотопные составы плутония и МА в стартовой загрузке и в топливе подпитки – ОЯТ реактора типа ВВЭР-1000 с выгоранием 35 ГВт·сут/т и выдержкой 10 лет (рассчитаны с использованием ПРИЗМА+РИСК)

Длительность кампании 300 эф. сут.

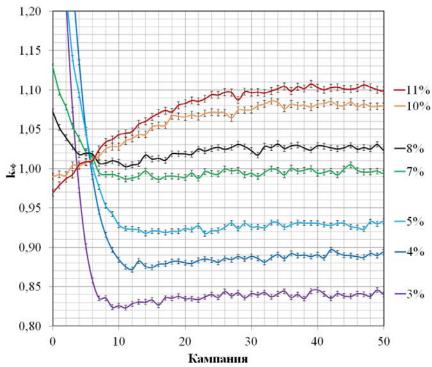
Удельная тепловая мощность в системе 100 кВт/л

Плотность топливной композиции рассчитывалась как плотность механической смеси солевого носителя и фторидов актиноидов

Статистическая погрешность расчетов не превышала 0,4%

Оптимальный режим трансмутации МА в ЖСР-С

Оптимальный режим работы реактора:


- > из топливной композиции при корректировке состава удаляются только ПД,
- > топливо подпитки содержит только МА,
- > в течение кампании обеспечивается критичность реактора.

Такому режиму соответствует *определенная концентрация актиноидов* в

топливной композиции.

Элемент (фторид)	v, %	Изотопный состав, % вес	Macca,
Pu (PuF ₃)	4,28	$^{238}\mathrm{Pu}_{0.468}^{239}\mathrm{Pu}_{0.160}^{240}\mathrm{Pu}_{0.201}^{241}\mathrm{Pu}_{0.0}^{}$	4,69
U (UF ₄)	0,41	$^{234}\text{U}_{0,681}^{235}\text{U}_{0,159}^{236}\text{U}_{0,160}^{238}\text{U}_{2,52\text{E-4}}^{238}$	0,44
Np (NpF ₄)	0,96	²³⁷ Np	1,05
Am (AmF ₃)	1,62	$^{241}\mathrm{Am}_{0.733}{}^{242\mathrm{m}}\mathrm{Am}_{0.055}{}^{243}\mathrm{Am}_{0.212}$	1,79
Cm (CmF ₃)	0,73	$^{242}\mathrm{Cm_{0.096}}^{243}\mathrm{Cm_{0.025}}^{244}\mathrm{Cm_{0.599}}^{245}\mathrm{Cm_{0.155}}^{246}\mathrm{Cm_{0.098}}^{247}\mathrm{Cm_{0.017}}^{248}\mathrm{Cm_{0.011}}^{248}Cm_$	0,82
MA	3,31	$Np_{0.286}Am_{0.490}Cm_{0.224}$	3,66
Актиниды	8,0	$U_{0.050}Pu_{0.535}MA_{0.416}$	8,79

Оптимальная концентрация 0,80 актинидов ~8 % мол. При этом достигается максимально возможная производительность трансмутации МА ~0,31 т при тепловой мощности 1 ГВт за кампанию 300 эф. сут. Нейтроника-2019

Зависимость $K_{9\varphi}$ системы на начало кампании от времени при различной концентрации актиноидов в топливной композиции (% мол)

5

Влияние нуклидного состава МА на характеристики оптимального режима трансмутации МА

Рассматривались:

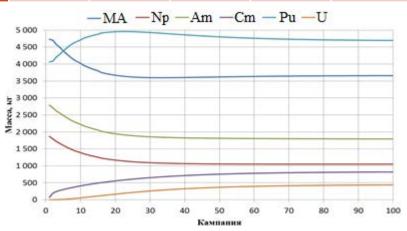
- > топливо подпитки с различным соотношением между ²⁴¹Am и ²³⁷Np,
- ▶ МА из ОЯТ реакторов типа ВВЭР-1000 с повышенной глубиной выгорания [1, 2].

Номер варианта	Описание варианта	$K_{ m e ar \phi}$
1	$^{237}{ m Np}_{0.399}{ m Am}_{0.586}{ m Cm}_{0.015}$ 35 ГВт·сут/т и выдержка 10 лет	1,024
2	$^{237}\text{Np}_{0.25}^{241}\text{Am}_{0.75}$	1,014
3	$^{237}\text{Np}_{0.5}^{241}\text{Am}_{0.5}$	1,017
4	$^{237}\text{Np}_{0.75}^{241}\text{Am}_{0.25}$	1,019
5	$^{237}{ m Np}_{0.494}{ m Am}_{0.447}{ m Cm}_{0.059}50\ \Gamma{ m Bt\cdot cyt/t}$, выдержка 5 лет	1,048
6	$^{237}{ m Np}_{0.407}{ m Am}_{0.446}{ m Cm}_{0.147}70\;\Gamma{ m Bt\cdot cyt/r}$, выдержка 5 лет	1,086

При варьировании соотношения 241 Am и 237 Np $K_{9\Phi}$ меняется слабо – в пределах ~1%

При использовании МА из ОЯТ реакторов типа ВВЭР-1000 с более высокой глубиной выгорания наблюдается рост $K_{9\varphi}$ за счет увеличения в топливе подпитки кюрия и 243 Am. В этом случае оптимальный режим достигается при меньшей концентрации актиноидов в топливной композиции.

- [1] Петров Е.Р., Бибичев Б.А., Домкин В.Д. и др. Результаты измерения радионуклидного состава и выгорания высоковыгоревшего топлива ВВЭР-1000 разрушающими методами. Радиохимия, 2012, т. 54, N 4, с. 348 351.
- [2] Петров Е.Р., Бибичев Б.А., Домкин В.Д. и др. Результаты измерения содержания изотопов актинидов, неодима, цезия и глубины выгорания в образце высоковыгоревшего топлива ВВЭР-1000 разрушающими методами. Радиохимия, 2013, т. 55, N 5, c. 437 439.


 Нейтроника-2019

Обеспечение критичности при выходе в равновесный режим трансмутации МА

В реальных условиях эксплуатации ЖСР-С его критичность на стадии выхода в равновесный режим может быть обеспечена путем добавления в топливную композицию солей плутония.

Мольная доля актиноидов, %		5	8	15	30		
За кампанию в равновесном режиме/за 50 кампаний							
Загружаемые МА, т	0,16/8,6	0,23	0,31/20	0,54/36	0,80		
Загружаемый Pu, т	0,15/9,5	0,08	0/4,3	0/5	0		
Выгружаемый Ри, т	0/0	0	0/0	0,23/10	0,49		
Масса трансмутированных МА, т		0,23	0,31/16	0,31/16	0,31		

Длительность выхода на равновесный режим – в диапазоне 5...10 лет.

Оптимальный режим трансмутации МА для системы конечных размеров

Расчетная модель – топливная композиция, заключенная в металлический корпус из сплава XH80MTЮ.

Варьировался объем а.з.: от возможного объема исследовательского (экспериментального) ЖСР 0.5 m^3 до 30 m^3 – объем а.з. реактора MOSART.

Характеристика	Расчетный вариант						
Объем а.з., м ³	30	15	8	4	2	1	0,5
Оптимальная концентрация актиноидов, % мол.	10	11	12	14	17	20	25
$\Phi_{\rm a.s.}$, ${f 10^{15}}$, см $^{-2}{ m c}^{-1}$	1,37	1,27	1,17	1,04	0,87	0,75	0,62
$\Phi_{ m корпус}$, ${f 10^{15}}$, см $^{-2}{ m c^{-1}}$	0,235	0,226	0,211	0,206	0,189	0,174	0,151
$\Phi^{fast}_{ m корпус}$, ${f 10^{15}}$, см $^{-2}$ с $^{-1}$	0,093	0,09	0,087	0,09	0,089	0,087	0,081
Φ_L , ${f 10^{23}}$, см $^{-2}$	3,712	3,562	3,325	3,241	2,971	2,735	2,379
Φ_L^{fast} , ${f 10}^{23}$, см $^{-2}$	1,459	1,423	1,365	1,424	1,399	1,373	1,275
$< E_n >$, кэВ	442	466	486	518	563	609	664
Состав топливной композиции (на начало кампании), кг							
U	1958	1162	719	460	302	183	114
Pu	16442	8881	5069	2850	1640	914	525
Np	4397	2480	1481	903	583	364	246
Am	6283	3509	2073	1241	778	473	308
Cm	3563	1831	997	517	269	138	71
Нейтроника-2019							

Заключение

- 1. Показано принципиальное существование оптимального равновесного режима трансмутации МА в ЖСР-С, при котором добавляется топливо подпитки, содержащее только МА, а извлекаются ПД с массой, эквивалентной количеству загруженных МА. Реализация такого режима достигается поддержанием определенной концентрации актиноидов. При концентрации актиноидов ниже выбранной необходимо в топливо подпитки вместо некоторого количества МА добавлять плутоний, уменьшая тем самым производительность трансмутации. В случае превышения необходимой концентрации приходится извлекать часть топлива с высоким содержанием ²³⁸Pu.
- 2. Оптимальная концентрация актиноидов в топливной композиции относительно слабо зависит от нуклидного состава МА в топливе подпитки.
- 3. Равновесный состав актиноидов, обеспечивающий работу ЖСР-С в оптимальном режиме, слабо зависит от объема а.з.
- 4. Оптимальная концентрация для ЖСР-С с объемом а.з. от 2 до 30 м³ находится в диапазоне 17...10 % мол.
- 5. Для обеспечения производительности трансмутации МА ~250 кг/год (ОДЦ, ГХК) в оптимальном равновесном режиме для реактора тепловой мощностью 800 МВт и объемом а.з. 8 м^3 концентрация актиноидов в топливной композиции должна составлять ~12 % мол.

Спасибо за внимание!

E-mail – <u>m.n.belonogov@vniitf.ru</u>

При проведении расчетов конечной системы использовались следующие исходные данные:

- ➤ толщина стенок корпуса реактора –5,5 см,
- \triangleright плотность корпуса 8000 кг/м 3 ,
- \triangleright отношение диаметра корпуса к его высоте 1,
- ➤ солевой растворитель эвтектика LiF–NaF–KF,
- ▶ нуклидные составы актиноидов соответствуют расчетным составам ОЯТ реактора типа ВВЭР-1000 с выгоранием 50 ГВт·сут/т и выдержкой 9 лет,
- ▶ температура топливной композиции и корпуса 650 °C,
- удельная тепловая мощность 100 кВт/л.