Расчёт доминантного отношения для активной зоны реактора типа БН

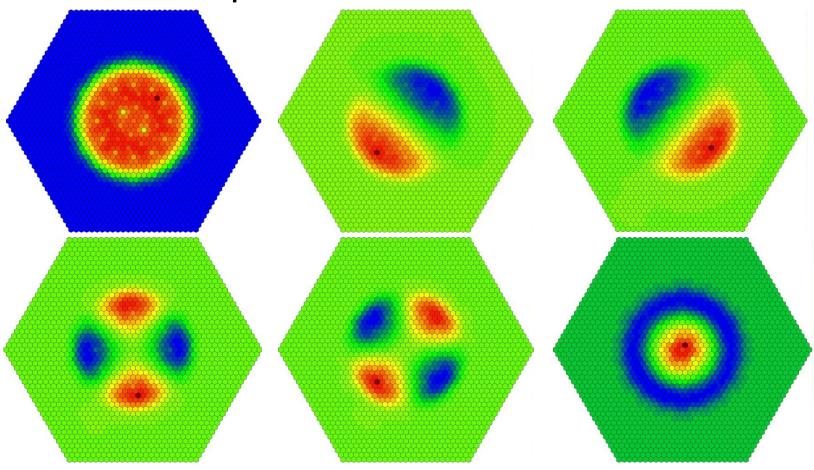
А.В. Гулевич, В.П. Долгих, В.А. Елисеев, О.О. Перегудова, Е.В. Рожихин, М.Ю. Семенов, В.Ю. Стогов, <u>И.В. Тормышев</u> АО «ГНЦ РФ-ФЭИ», г. Обнинск

Особенности компоновки активных зон реакторов типа БН большой мощности

- Высота активной зоны не более 85-90 см
- Диаметр более 4 м
- Отношение D/H ~5
- Необходимость обоснования стабильности поля энерговыделения в такой зоне

Влияние доминантного отношения на поля энерговыделения в реакторе

- Условно-критическая задача $\hat{A}_{\Psi_n} = \lambda_n \hat{M}_{\Psi_n}$
- Доминантное отношение λ_1/λ_0
- Статическое возмущение нейтронного потока


$$\Delta \psi = \sum_{n=1}^{\infty} a_i \psi_i, \quad a_i = -\frac{k_0 k_i}{k_0 - k_i} \frac{\left\langle \psi_i^+, \left(\Delta A - \frac{\Delta M}{k_0} \right) \psi_0 \right\rangle}{\left\langle \psi_i^+, M \psi_i \right\rangle}$$

• Нестационарный нейтронный поток

$$\Delta \phi(\vec{r},t) = \sum_{n} a_{n}(t) \psi_{n}(\vec{r}), \quad a_{n}(t) = \frac{\rho_{n} k_{n}}{1 - k_{n}} \left\{ 1 - \frac{\beta k_{n}}{1 - (1 - \beta) k_{n}} \exp\left[\frac{-\lambda (1 - k_{n}) t}{1 - (1 - \beta) k_{n}}\right] \right\} - \frac{\beta k_{n} \left\langle \psi_{n}^{*}, \Delta \hat{M} \psi_{0} \right\rangle}{\left[1 - (1 - \beta) k_{n}\right] \left\langle \psi_{n}^{*}, \hat{M} \psi_{n} \right\rangle} \exp\left[\frac{-\lambda (1 - k_{n}) t}{1 - (1 - \beta) k_{n}}\right]$$

Расчёт доминантного отношения для активной зоны реактора большой мощности типа БН

• Выполнен расчет нескольких ψ_n и λ_n

Расчёт доминантного отношения для реактора типа БН

	БН-600	БН-800	Без вставки, начало МК	Без вставки, конец МК	С вставкой, начало МК	С вставкой, конец МК
k_1/k_0	0.92772	0.94521	0.98098	0.97965	0.98088	0.98019
EVS	12.80	17.11	51.58	48.15	51.30	49.47

• Оценка сеточной погрешности

1 точка на ТВС $k_1/k_0 = 0.98098$, EVS = 51,6

6 точек на ТВС $k_1/k_0 = 0.98199$, EVS = 54,1

24 точки на ТВС $k_1/k_0 = 0.98223$, EVS = 54,8

удвоенное число слоев $k_1/k_0 = 0.98107$, EVS = 51.8

Доминантное отношение в реакторе типа БН и в реакторах на тепловых нейтронах большой мощности

- БН 0,982–0,980, EVS 50-55
- BWR 0,995–0,991, EVS 190-110
- PWR 0,996–0,992, EVS 240-120