ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

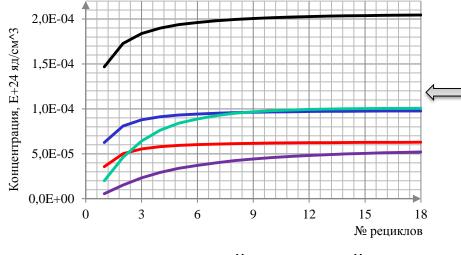
«Научно-технический центр по ядерной и радиационной безопасности»

Исследование возможности замыкания топливного цикла для реактора BBЭР-1000

В.В. Семишин, О.Ю. Кавун

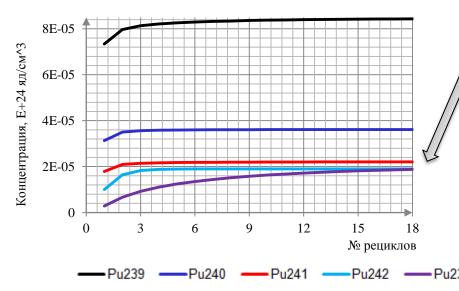
2019, Обнинск

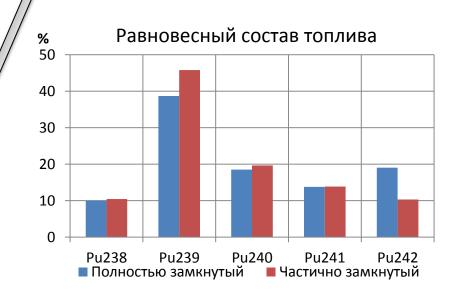
Введение



- В данной работе рассматривается альтернативный вариант перехода к замкнутому ядерному топливному циклу.
- Целью данной работы является расчетный анализ возможности применения регенерированного ремикс топлива в реакторах типа ВВЭР-1000 при многократном повторном использовании.
- Рассмотрено два типа топливных цикла: полностью замкнутый с повторной загрузкой в реактор всего выгружаемого плутония и частично замкнутый. Проведено сравнение основных нейтронно-физических характеристик исследуемых топливных циклов с топливным циклом на основе природного урана.
- В качестве топлива рассматривается уран-плутониевый регенерат, выделенный из отработавшего ядерного топлива.

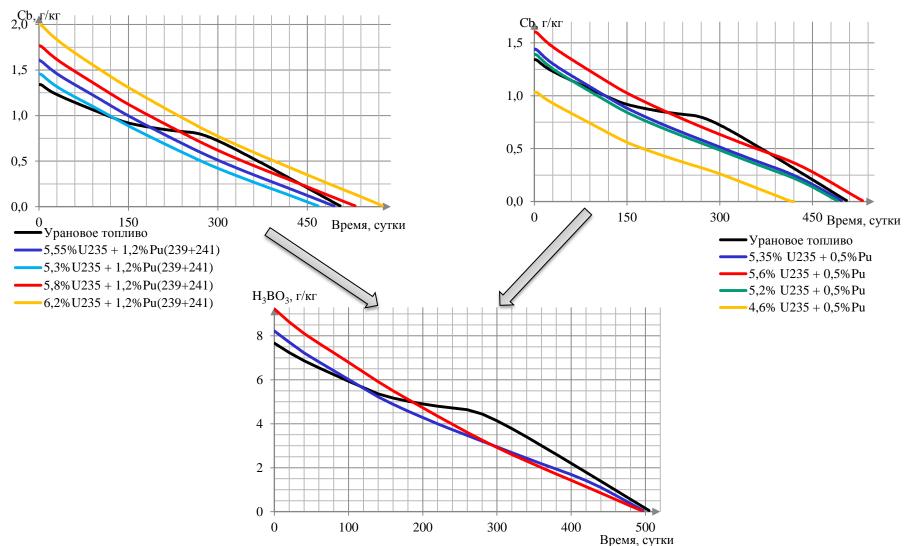
Определение равновесных концентраций изотопов плутония

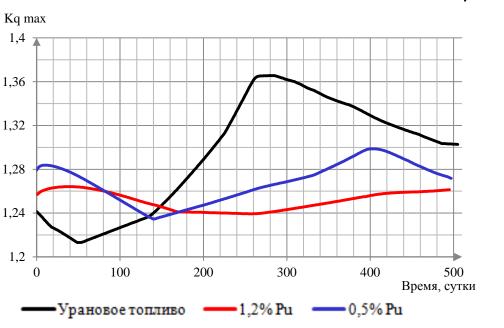

Полностью замкнутый топливный цикл



При многократном повторном использовании не происходит значительного изменения изотопного состава плутония

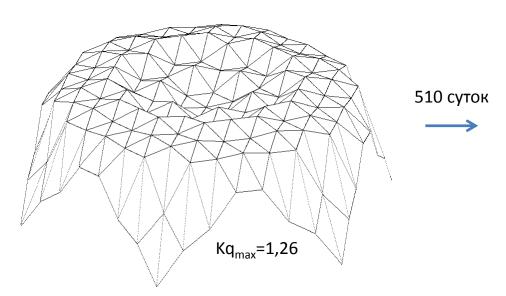
Частично замкнутый топливный цикл

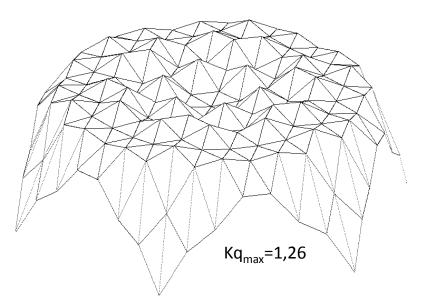


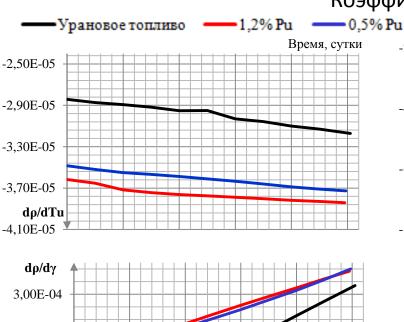

Определение необходимого дообогащения топлива и изменение основных характеристик активной зоны

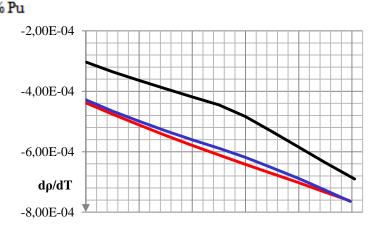
Полностью замкнутый топливный цикл

Частично замкнутый топливный цикл




Изменение основных характеристик активной зоны


Снижение максимальной неравномерности энерговыделения в течение кампании


Меньшее изменение неравномерности в течение кампании

Коэффициенты реактивности

 $|d\rho/dT_{TONJ}|\uparrow$ $|d\rho/dT_{T/H}|\uparrow$

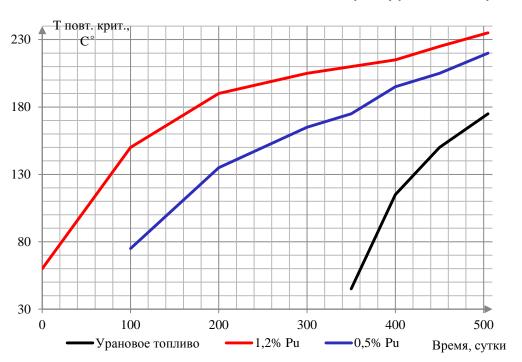
-0,02 \top							
-	_	-					-
0.04							
-0,04 +							
_		-					
-		-					
-0,06 🕂					_		_
				_			
3./30						_	
dρ/dC -0,08		-					
-0.08 🔻							

 $|d\rho/d\gamma|\uparrow$ $|d\rho/dC_{6op}|\downarrow$

L	M	Г	н	

2,00E-04

1,00E-04

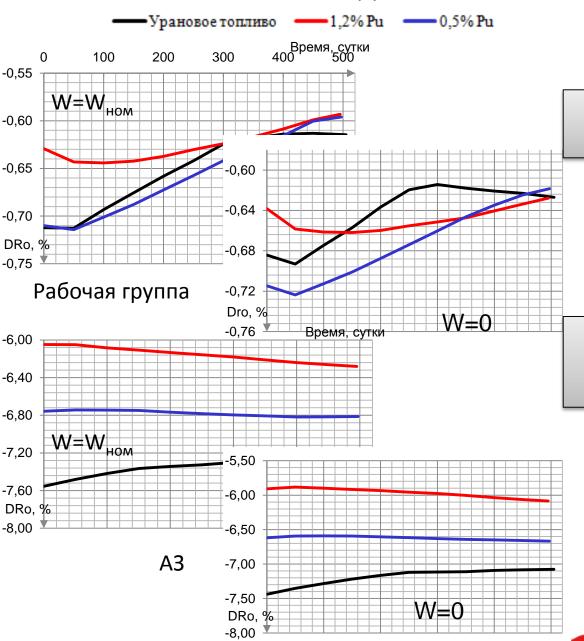

	0 сут.	510 сут.
Урановое топливо	1,15E-05	1,30E-05
Регенерат	6,13E-06	7,23E-06

 β_{θ} , %

	0 сут.	510 сут.
Урановое топливо	0,75	0,51
Регенерат	0,56	0,48

 $eta_{
m 9} \downarrow \ L_{
m MTH} \downarrow$

Температура повторной критичности


Увеличение температуры повторной критичности

Возможность возникновения повторной критичности с самого начала кампании

Значения температуры повторной критичности

Т сутки	Урановое топливо	1,2%Pu	0,5%Pu
0	-	60	1
100	-	150	75
200	-	190	135
300	-	205	165
350	45	210	175
400	115	215	195
450	150	225	205
505	175	235	220

Эффективность ОР СУЗ и АЗ

Снижение эффективности АЗ

Необходимость дополнительного обогащения по ¹⁰В

Выводы

Расход природного урана	Уменьшение на 20-30 %
Состав топлива при многократном рециклировании	Не изменяется, за исключением ²³⁸ Pu
Kq _{max}	Уменьшение
dp/dT _{топл} dp/dT _{т/н}	Уменьшение
$ m B_{ m 9} m m L_{M\Gamma H}$	Уменьшение

CH₃BO₃

Температура повторной

критичности

Необходимо увеличение содержания бора в теплоносителе и ¹⁰В в ПЭЛах

Увеличение

Спасибо за внимание!