ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Доклад на научно-техническую конференцию «Нейтроника-2019»

«К вопросу о цене плутония в двухкомпонентной ЯЭС»

В.М. Декусар, О. С. Гурская

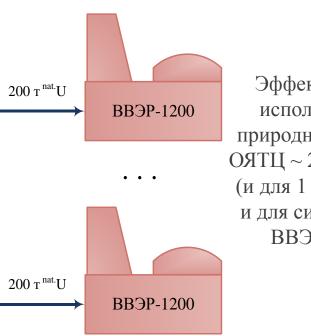
АО «ГНЦ РФ-ФЭИ», г. Обнинск

27-29 ноября 2019 г.

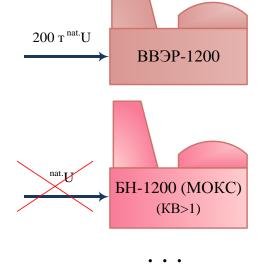
г. Обнинск

Введение

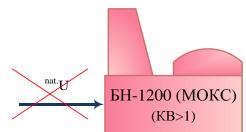
- Замыкание ядерного топливного цикла АЭ приводит к появлению в ЯЭС второго, помимо энергии, продукта вторичных ядерных материалов, извлекаемых из ОЯТ, в первую очередь плутония.
- Производство плутония в настоящее время никак не учитывается при оценках технико-экономических показателей АЭС. Разделить затраты на производство электроэнергии и производство плутония, которое всегда имеет место при облучении ядерного топлива на основе урана, при этом практически невозможно.


Введение (продолжение)

- Для правильной и полной оценки роли быстрых реакторов необходим технико-экономический критерий, характеризующий уникальное качество быстрого реактора – возможность расширенного воспроизводства ядерного горючего.
- В работе излагается возможная расчетная методика для определения стоимости плутония, базирующаяся на системном подходе, при котором учитывается возможный рост доходов в ЯЭС за счет роста продаж вовне природного урана, обусловленного его экономией при замене тепловых реакторов быстрыми реакторами на МОКС-топливе.


Предлагаемый подход

Предполагается, что ЯЭС включает АЭС с тепловыми и быстрыми реакторами и


инфраструктуру замкнутого ЯТЦ.

Эффективность использования природного урана в ОЯТЦ ~ 20 г/МВт·час (и для 1 ВВЭР-1200, и для системы из п ВВЭР-1200)

При вводе n быстрых реакторов на 1 ВВЭР эффективность использования природного урана возрастет в (n+1) раз

<u> 11</u>

При этом высвобождается n/(n+1) ^{nat}U от его количества, потребляемого 1 BBЭР-1200. Высвобождаемый ^{nat}U имеет конкретную рыночную стоимость.

www.rosatorh.ru

4

Дополнительный доход

Дополнительный доход может быть определен через рыночную цену высвобождаемого natU (или oбог.U, или TBC для BBЭP ...)

Дисконтированный доход $E_{доп}$, получаемый за весь проектный ресурс энергоблока длительностью L за счет экономии природного урана

$$E_{\partial on} = \sum_{t=t_0 + \Delta t}^{t_0 + L + \Delta t} \frac{C_{\partial on} \cdot (1 + es_{\partial on})^{(t-t_0)} \cdot G_{\partial on}(t)}{(1+r)^{(t-t_0)}},$$

 t_0 – базовая дата (обычно это момент пуска реактора в эксплуатацию);

L – длительность жизненного цикла АЭС;

r – норма дисконтирования;

С_{доп} – удельная стоимость продукции, поступающей на рынок (природный уран, ТВС), за счет которой обеспечивается дополнительный доход, US\$/кг;

es_{доп} – годовая эскалация удельной цены продукции, выставляемой на продажу (может быть как положительной, так и отрицательной);

G_{доп} – масса продукции, которая может ежегодно поставляться на рынок (природный уран) при замене тепловых реакторов на быстрые, кг;

Δt – временной лаг (интервал запаздывания или опережения) между временем получения дохода от продажи высвобождаемого урана (или ТВС) и базовой датой (временем пуска энергоблока в эксплуатации, моментом начала продажи электричества).

Предлагаемая математическая модель

Перейдя в формуле для Е от суммирования к интегрированию и выполнив его, получим

$$E = C_{\partial on} \cdot G_{TP} \frac{P_{EP} \cdot KUYM_{EP}}{P_{TP} \cdot KUYM_{TP}} \cdot \frac{\exp(-\lambda \cdot \Delta t) \cdot (1 - \exp(-\lambda \cdot L))}{\lambda}$$
(2)

где
$$\lambda = \lambda_d - \lambda_2 - \lambda_{es}$$
; $\lambda_d = \ln(1+r)$; $\lambda_2 = \frac{\ln 2}{T_2}$; $\lambda_{es} = \ln(1+es_{\lambda_{on}})$

Введем понятие приведенной (постоянной за весь жизненный цикл) удельной стоимости избыточного плутония $C_{p\mu}$

$$E = \int_{t=t_0+\Delta t}^{t=t_0+L+\Delta t} \frac{C_{Pu} \cdot M_{Pu}(t)}{\exp((t-t_0) \cdot \lambda_d)} dt, (3)$$

где
$$M_{Pu}(t) = \frac{G_{Pu}^{0} \cdot (KH - 1)}{T} \cdot \exp(\lambda_{2} \cdot (t - t_{0})),$$
 (4)

Выполнив интегрирование (3) с учетом (4) и приравняв (2) и (3), получим выражение для приведенной удельной стоимости плутония, получим:

Приведенная удельная стоимость плутония

$$C_{Pu} = C_{oon} \cdot G_{TP} \frac{P_{EP} \cdot KUYM_{EP}}{P_{TP} \cdot KUYM_{TP}} \cdot \frac{T}{G_{Pu}^0 \cdot (KH-1)} \cdot \frac{\lambda_2 - \lambda_d}{\lambda} \cdot \frac{\exp(-\lambda \Delta t) \cdot (1 - \exp(-\lambda L))}{\exp((\lambda_2 - \lambda_d) \Delta t) \cdot (\exp((\lambda_2 - \lambda_d) L) - 1)},$$

С_{доп} – удельная стоимость продукции, поступающей на рынок (природный уран, ТВС), за счет которой обеспечивается дополнительный доход, US\$/кг;

 ${\rm G_{TP}}\;\;$ – ежегодная потребность в природном уране для теплового реактора, т;

 $P_{TP(BP)}$ – установленная мощность теплового (быстрого) реактора;

 $K H Y M_{TP(BP)}$ – коэффициент установленной мощности теплового (быстрого) реактора;

 ${\rm G^0_{p_0}}$ – начальная загрузка быстрого реактора плутонием;

Т – кампания топлива в реакторе, годы;

КН - коэффициент накопления вторичного плутония;

L – длительность жизненного цикла АЭС;

r – норма дисконтирования;

 T_2 – системное время удвоения, годы;

es_{лоп} - годовая эскалация удельной цены продукции, выставляемой на продажу;

∆t – временной лаг (интервал запаздывания или опережения) между временем получения дохода от продажи высвобождаемого урана (или ТВС) и базовой датой (временем пуска энергоблока в эксплуатации, моментом начала продажи электричества).

Предлагаемая математическая модель связывает

- установленные мощности быстрых и тепловых реакторов в системе и их КИУМ;
- годовую потребность теплового реактора в природном уране;
- начальную загрузку плутония в быстром реакторе;
- длительность кампании быстрого реактора;
- коэффициент накопления плутония в быстром реакторе;
- период удвоения плутония для быстрого реактора;
- норму дисконтирования, принятую для ЯЭС;
- цену природного урана на рынке в данный момент;
- прогнозируемую (или устанавливаемую экспертно) эскалацию цены на природный уран.

Частный случай

Норма дисконтирования r=0%, отсутствует эскалация цены на природный уран и ∆t=0

$$C_{Pu} = C_{\partial on} \cdot G_{TP} \frac{P_{EP} \cdot KMYM_{EP}}{P_{TP} \cdot KMYM_{TP}} \cdot \frac{T}{G_{Pu}^{0} \cdot (KH-1)}$$

При КН \to 1 (имеет место при отсутствии избыточного плутония), стоимость плутония $\mathsf{CPu} \to \infty$.

Численные примеры расчета удельной приведенной стоимости плутония

 $C_{\text{доп}} = 100 \text{ $/\text{кг}; G_{\text{TP}}$=}200 \text{ т; P}_{\text{БP}} = 1220 \text{ МВт; КИУМ}_{\text{БP}} = 0,9034; P}_{\text{ТP}} = 1250 \text{ МВт; КИУМ}_{\text{TP}} = 0,88;$ KH=1,13; $G^0_{\text{Pu}} = 8,4 \text{ т; T=4,42 года; L=60 лет. Система ВВЭР-1200+БН-1200.}$

Таблица 1 — Удельная приведенная стоимость плутония (Δt =0), К\$/кг

Эскалация цены на ^{nat} U, %	Время удвоения										
		$T_2 = 10 \text{J}$	iem	$T_2 = 25$ лет			T_2 =50 лет				
	1	$M_{Pu} = 15$,8 m		$M_{Pu}=1,3$	m	$M_{Pu} = 0.57 m$				
	r=0%	r=5%	r=10%	r=0%	r=5%	r=10%	r=0%	r=5%	r=10%		
0	81,13	81,13	81,13	81,13	81,13	81,13	81,13	81,13	81,13		
3	339,5	262,9	1 178,63	276,24	186,41	131,75	250,26	165,74	122,61		
5	902,76	623,7	8 342,79	670,61	367,54	200,76	579,93	302,38	175,14		
Эскалация цены на ^{nat} U, %	$T_2 = 75 \ лет$					$T_2 \rightarrow \infty$					
	$M_{Pu} = 0.43 \text{ m}$					$M_{Pu} = 0.25 \ m$					
	r=0%		r=5%	r=10%		r=0%	r=5%		r=10%		
0	81,13		81,13	81,1	13	81,13	81,13		81,13		
3	241,40		159,69	120,	09	223,77	148,88		115,71		
5	549,56		283,74	168,27		489,96	250,93		156,54		

Численные примеры расчета удельной приведенной стоимости плутония (продолжение)

Таблица 2 — Удельная приведенная стоимость плутония ($\Delta t=5$ лет), К\$/кг

Эскалация цены на	Время удвоения										
	,	$T_2 = 10 \pi$	ет		$T_2 = 25$ лег	m	$T_2 = 50$ лет				
	Λ	$I_{Pu} = 15$,	8 m	1	$M_{Pu} = 1.3$	m	$M_{Pu} = 0.57 \ m$				
	r=0%	r=5%	r=10%	r=0%	r=5%	r=10%	r=0%	r=5%	r=10%		
0	81,13	81,13	81,13	81,13	81,13	81,13	81,13	81,13	81,13		
3	393,58	304,79	207,08	320,24	216,09	152,74	290,12	192,14	142,14		
5	1152,17	796,12	2 437,50	855,89	469,08	256,23	740,15	385,93	223,53		
Эскалация цены на natU, %	T_2 =75 лет					$T_2 \rightarrow \infty$					
	$M_{Pu} = 0.43 \text{ m}$					$M_{Pu}=0.25 m$					
	r=0%		r=5%	r=5% r=10		r=0%	r=5%		r=10%		
0	81,13		81,13	81,1	3	81,13	81,13		81,13		
3	279,85		185,13	139,2	22	259,41	172,59		134,14		
5	701,40		362,13	214,7	76	625,32	320,26		199,78		

Результаты оценки стоимости плутония

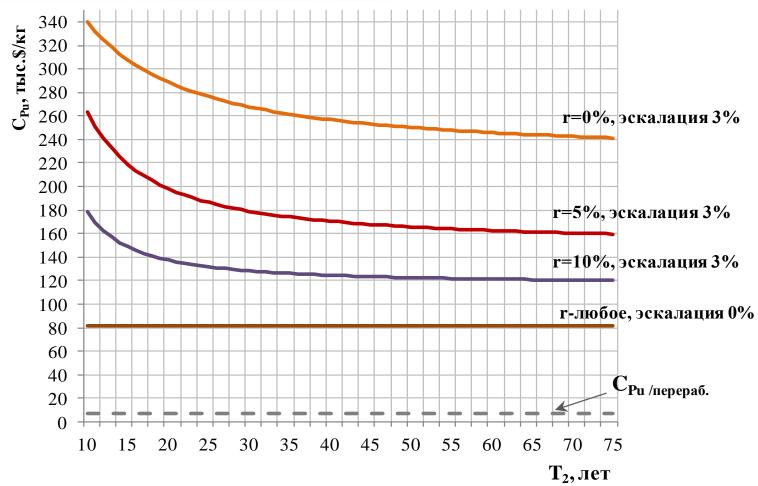


Рисунок 1 – Удельная стоимость плутония в ЯЭС в зависимости от времени удвоения при Δt =0 и эскалации цены на природный уран в 0% и 3%

Выводы

- В качестве характеристики стоимости плутония введено понятие удельной приведенной стоимости плутония. Построена математическая модель, позволяющая рассчитать удельную цену плутония.
- В рамках этой модели получено соотношение для расчета удельной стоимости плутония, которое связывает основные топливные характеристики рассматриваемых ядерных реакторов и экономические показатели топливного цикла ЯЭС.
- Анализ показал, что стоимость плутония в значительной степени определяется текущей ценой на природный уран и его эскалацией, коэффициентом накопления плутония в быстром реакторе, длительностью внешнего топливного цикла, периодом удвоения плутония в системе и т.д.

Выводы (продолжение)

- Проведено расчетное исследование удельной приведенной стоимости плутония в двухпродуктовой модели ЯЭС с реакторами БН-1200М и ВВЭР-1200. Результаты расчетов во всех рассмотренных случаях показывают на значительную удельную приведенную стоимость плутония. При этом минимальная цена плутония, полученная для такой системы, при текущей и постоянной цене на природный уран (\$100/кг), нулевой ставке дисконтирования и нулевом временном лаге по отношению к базовой дате составляет около К\$80/кг.
- При значениях основных параметров, близких к проектным для системы ВВЭР+БН (цена природного урана \$100/кг, его годовая эскалация 3%, дисконт 5%, период удвоения 50 лет), цена плутония составит около К\$170/кг.

СПАСИБО ЗА ВНИМАНИЕ!